Measurement of the electroweak production of Zγ and two jets at 13 TeV and constraints on EFTs

Ying An, Peking University

中国物理学会高能物理分会

第十一届全国会员代表大会暨学术年会 Aug 10 2022

Outline

- Introduction and physics motivation
- Object definitions and samples
- Background estimation and event selection
- Systematic uncertainty
- Results
 - Signal significance
 - Inclusive and differential cross sections
 - Anomalous couplings

Physics motivation

CMS:

13 TeV (35.9 fb⁻¹):

- Observed (expected) significance is 3.9σ (5.2 σ)
- Observed (expected) significance is 4.7σ (5.5 σ), if combine data in 8 TeV

ATLAS:

13 TeV (36 fb⁻¹):

• Observed (expected) significance is $4.1\sigma (4.1\sigma)$

Expect to give the first observation and give more accurate cross section results

Object and Sample

states	Generator (MadGraph_aMC@NLO)	identification	identification	identification
ееүјј	process: pp > ℓℓγjj QCD=0	cut-based-medium (≈80%)	cut-based-	anti-k⊤
μμγϳϳ	$m_{\ell\ell} > 50 \text{ GeV},$ $m_{jj} > 120 \text{ GeV}$	cut-based-tight (≥95%)	medium (≈80%)	98%-99%

Vector boson scattering (VBS) signature:

large dijet mass and large η separation between the jets

CMS

Main results:

- ✓ Signal significance
- ✓ Inclusive and differential cross sections
- ✓ Limits on anomalous couplings

Background estimation

- Diboson processes with $\geq 2\ell \rightarrow$ decreased by the loose lepton ID
- TTγ and tW where the top decays to b and W
- QCD Zy with total same background \rightarrow irreducible background
- Interference sample as a part of QCD Zγ
- Nonprompt photon from hadronic jet

estimated by normalizing MC to data

estimated with data-driven method

QCD Zy estimation

- Diboson processes with $\geq 2\ell \rightarrow$ decreased by the loose lepton ID
- TTγ and tW where the top decays to b and W
- QCD Zy with total same background \rightarrow irreducible background
- Interference sample as a part of QCD Zy
- Nonprompt photon from hadronic jet

estimated by normalizing MC to data

estimated with data-driven method

QCD background

Normalization is constrained by the simultaneous fit of the signal region and low m_{jj} control region

Nonprompt y estimation

estimated by

to data

normalizing MC

- TTγ and tW where the top decays to b and W
- QCD Zy with total same background \rightarrow irreducible background
- Interference sample as a part of QCD Zy
- Nonprompt photon from hadronic jet

estimated with data-driven method

Nonprompt y estimation

- Diboson processes that produce \geq 2 leptons
- TTy and tW where the top decays to b and W
- QCD Zy with total same background \rightarrow irreducible background
- Interference sample as a part of QCD Zγ
- Nonprompt photon from hadronic jet

estimated by normalizing MC to data

estimated with data-driven method

Event selection

137 fb⁻¹ (13 TeV)

m, [GeV]

137 fb⁻¹ (13 TeV)

9

Systematic uncertainty

Theoretical uncertainties:

- Factorization and renormalization scale uncertainty
 - Calculated bin-by-bin, correlated between bins, channels, and years
- PDF uncertainty
 - Standard deviation of the around 100 NNPDF PDF set variations
 - Calculated bin-by-bin, correlated between bins, channels, and years

Experimental uncertainties:

- JER and JES uncertainty
 - Largest deviation of up/down to the central
 - Calculated bin-by-bin, correlated between bins and channels, uncorrelated in different years
- Efficiencies, pileup, L1prefiring and etc
- Fake photon uncertainty
 - Three components (Closure test + Sideband choice + True template choice)
 - Calculated bin-by-bin, correlated between bins, uncorrelated in different channels and years

 $\sigma_{tot}^{pp \to X}(\mu_F, \mu_R) = \sum_{i,i} \int dx_1 dx_2 f_{i,p}(x_1, \mu_F) f_{j,p}(x_2, \mu_F) \hat{\sigma}_{ij}^{ij \to X}(x_1 x_2 S, \mu_F, \mu_R)$

- Constrained QCD Z_γ normalization by data in a low m_{jj} control region.
 SR: m_{jj} [500, 800, 1200, ∞) CR: m_{jj} [150, 300, 400, 500]
 Very different kinematic distribution
- From the combinations of μ_F and μ_R , if μ_0 is the nominal scale, we have: \blacksquare Nuisance parameter 1: μ_F only $(2\mu_0, \mu_0)$ and $(0.5\mu_0, \mu_0)$ \blacksquare Nuisance parameter 2: μ_R only $(\mu_0, 2\mu_0)$ and $(\mu_0, 0.5\mu_0)$ \blacksquare Nuisance parameter 3: $\mu_R + \mu_F$ fully correlated $(2\mu_0, 2\mu_0)$ and $(0.5\mu_0, 0.5\mu_0)$

Make the theoretical uncertainty more conservative and reasonable

CMS, pourse unit between

Nonprompt y uncertainty

Three sources uncertainty contribute to the nonprompt γ fraction added

in quadrature

- 1. Different MC sample (EWK, QCD) used for true template
- 2. Charge isolation sideband choice
- 3. Difference of fit and MC truth(closure test)

Control the nonprompt uncertainty from data-driven estimation well

Signal significance

- Perform the simultaneous fit in the signal region and the low m_{jj} control region
- Using the 2D variable (m_j and $\Delta\eta_{jj}$) in the signal region
- 1D variable m_{jj} in the control region

Signal events concentrate on the high m_{jj} and $\Delta \eta_{jj}$ bins

Measurement of cross section

Events /bin

Data/Pred.

SMP-21-016, PhysRevD.104.072001

- Remove the normalization part of the theoretical uncertainties
- Divide the electroweak Zγ+2j yield into <u>in-</u> <u>fiducial</u> and <u>out-fiducial</u> contributions

•
$$\sigma_{\rm EW}^{\rm SM\,pred.} = 4.34 \pm 0.26 \,(\text{scale}) \pm 0.06 \,(\text{PDF}) \,\text{fb}$$

•
$$\mu = 1.20^{+0.12}_{-0.12} (\text{stat})^{+0.14}_{-0.12} (\text{syst}) = 1.20^{+0.18}_{-0.17}$$

•
$$\sigma_{\text{measured}} = 5.21 \pm 0.52 \text{ (stat)} \pm 0.56 \text{ (syst) fb}$$

= 5.21 ± 0.76 fb

The systematic uncertainty is comparable with the statistical uncertainty

Results – EW cross section

Systematic uncertainty	Impact [%]	
Jet energy correction	+7.9	-6.7
Theoretical uncertainties	+5.5	-4.7
MC statistical uncertainties	+4.7	-4.5
PU	+4.7	-4.1
Related to e, γ	+4.5	-3.6
PU jet ID	+3.7	-3.4
ECAL timing shift at L1	+3.5	-2.8
Nonprompt- γ bkg. estimate	+2.0	-1.6
Related to μ	+1.7	-1.4
Integrated luminosity	+0.8	-0.6
Total systematic uncertainty	+14	-12

Unfolded differential cross sections

Similar with the fiducial XS measurement, we perform 'unfolding' to revert the 'detector smearing' on the data to get the 'True' distribution

$$\mathscr{L}(\overrightarrow{\mu}; \overrightarrow{\theta}) = \prod_{i} \text{Poisson}(y_i | \sum_{j} R_{ij}(\overrightarrow{\theta}) u_j s_j(\overrightarrow{\theta}) + b_i(\overrightarrow{\theta})) \cdot p(\overrightarrow{\theta} | \overrightarrow{\theta})$$

 $y_i^{\text{reco}} = \sum_{j} R_{ij} \cdot x_j^{\text{gen}} + b_i,$ $R_{ij} = P(\text{observed in bin}_i | \text{generated in bin}_j)$

- Each reconstructed bin (j) describes the contribution from each truth bin (i) this is the R_{ji} (response matrix)
 - Condition number of the R is smaller than about 10, so the regularization is not needed
- Same uncertainties with significance measurement
- Differential cross sections are measured for:
 - Three 1D variables: p_{T}^{γ} , $p_{\mathrm{T}}^{\ell_1}$, $p_{\mathrm{T}}^{j_1}$,
 - One 2D variable: m_{jj} - $\bar{\Delta}\eta_{jj}$

Unfolded differential cross sections

Within the uncertainties, the measurements agree with the predictions.

Results – aQGC

 Extended the SM Lagrangian with higher dimensional operators maintaining SU(2)×U(1) gauge symmetry:

The most stringent limit for operator T_9

Summary

- \checkmark First observation of VBS Zy with significance far more 5 σ
- ✓ Accurate fiducial cross section measurement
- ✓ First unfolded differential cross sections measurement
- \checkmark AQGC limits for operator $M_{0-5,7},\,T_{0-2},$ and T_{5-9}
 - ✓ Limit for T_9 is the most stringent limit to date

Backup

Nonprompt y estimation

- Construct pseudo-data using all MC samples
- Perform the template fit on this pesudo-data with different choice of charged isolation sideband
- Compare the fit results with information from simulation directly

- The charged isolation sideband is <u>well tuned</u> in the nonprompt γ estimation
 - Give us more accurate nonprompt γ estimation
 - Control the corresponding uncertainty well

Backup

sigmalEtalEta is the log energy weighted RMS of the shower in units of crystals

$$- \sigma_{i\eta i\eta} = \sqrt{\left(\frac{\Sigma_i^{5\times 5} w_i (\eta_i - \overline{\eta}_{5\times 5})^2}{\Sigma_i^{5\times 5} w_i}\right)^2}$$

 $- w_i = 4.7 + \ln \frac{E_i}{E_{5\times 5}}$

- this is effectively a noise cut, each crystal needs to have > 0.9% of 5x5 energy
- means that very low energy electrons are sensitive to noise as 0.9% of a small number brings it below noise threshold
- E_i = energy of crystal, $E_{5\times 5}$ energy of 5x5
 - likewise for η
- $-~\eta$ is in units of crystals, not absolute η
 - endcap uses $(ix^2 + iy^2)^{1/2}$ to get η in terms of crystals
- normalised to 0.01745 in barrel and 0.0447 in endcap
- cut effectively means that all the energy is within two crystals

aQGC limits

As the sensitivity on the T_i operators of VBS Zy, we show the comparison of the limits of T_i from recent public VBS results with the full Run2 data

Operator	SMP-20-016 VBS Ζγ	SMP-20-001 VBS ZZ	SMP-19-012 VBS W±W±
f _{то}	-0.64 , 0.57	-0.24 , 0.22	-0.28 , 0.31
f _{T1}	-0.81 , 0.90	-0.31 , 0.31	-0.12 , 0.15
f _{T2}	-1.68 , 1.54	-0.63 , 0.59	-0.38 , 0.50
f _{T5}	-0.58 , 0.64		
f _{T6}	-1.30 , 1.33		
f _{T7}	-2.15 , 2.43		
f _{⊤8}	-0.47 , 0.47	-0.43 , 0.43	
f _{T9}	-0.91 , 0.91	-0.92 , 0.92	

Similar sensitivity on T_8 and T_9 between VBS Z_Y and VBS ZZ, which is expected, as the T_8 and T_9 give rise to QGCs only containing the neutral gauge bosons.

Backup

variables	2016	2017	2018
p_T^{γ}	1.08	1.12	1.21
$p_T^{j_1}$	1.35	1.41	1.44
$p_T^{l_1}$	1.09	1.09	1.11
m_{jj} - $\Delta \eta j j$	1.87	1.97	1.95

Condition Number of R for EW

variables	2016	2017	2018
p_T^{γ}	1.16	1.41	1.37
$p_T^{j_1}$	1.33	1.41	1.39
$p_T^{l_1}$	1.10	1.35	1.16
m_{jj} -Δη jj	1.93	2.32	2.09

Condition Number of R for EW+QCD

If the condition number is small (~10), then the problem is well-conditioned and can most likely be solved using the unregularized maximum likelihood estimate (MLE). This happens when the resolution effects are small and R is almost diagonal. If on the other hand, the condition number is large (~10⁵) then the problem is ill-conditioned and the unfolded estimator needs to be regularized.

Backup

Building blocks:

- $D_{\mu}\Phi$: Higgs doublet field, affects the coupling of longitudinal modes of the gauge bosons.
- + $\hat{W}_{\mu\nu}$, $\hat{B}_{\mu\nu}$: Field strength tensors

Dimension-8 operators (only field strength/mixed)

$$\begin{aligned} \mathcal{O}_{T,0} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right] , & \mathcal{O}_{M,0} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{O}_{T,1} &= \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right] , & \mathcal{O}_{M,1} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] , \\ \mathcal{O}_{T,2} &= \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right] , & \mathcal{O}_{M,2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] , \\ \mathcal{O}_{T,5} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \cdot B_{\alpha\beta} B^{\alpha\beta} , & \mathcal{O}_{M,3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \cdot \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] , \\ \mathcal{O}_{T,6} &= \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \cdot B_{\mu\beta} B^{\alpha\nu} , & \mathcal{O}_{M,4} &= \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \cdot B^{\beta\nu} , \\ \mathcal{O}_{T,7} &= \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \cdot B_{\beta\nu} B^{\nu\alpha} , & \mathcal{O}_{M,5} &= \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \cdot B^{\beta\mu} , \\ \mathcal{O}_{T,8} &= B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} , & \mathcal{O}_{M,6} &= \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} W^{\beta\nu} D^{\mu} \Phi \right] , \\ \mathcal{O}_{T,9} &= B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} . & \mathcal{O}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\nu} \Phi \right] , \end{aligned}$$