Vector Boson Scattering and new phenomena at LHC

中国物理学会高能物理分会2022

Jing Chen

2022.08.10

Introduction

- Vector boson scattering (VBS) measurements offers an important way to probe electroweak symmetry breaking.
- A good probe of the SM in the EW sector. • Measure VBS via the corresponding EW productions.
- Sensitive to new physics: • probe aTGC, aQGC ...

Higgs boson exchange Four boson vertex Vector boson exchange

Main interest of VV scattering

• Without Higgs, $W_L^+W_L^- \rightarrow Z_LZ_L$ would break unitarity.

 $\mathcal{M}(W_L^+W_L^- \to Z_L Z_L) \sim \frac{s}{m_{\mu\nu}^2}$

波道研究近

Dao Lee Institute

海交通大學

- The presence of the Higgs boson prevents the VBS amplitudes from violating unitarity at the TeV scale.
- To understand the nature of EWSB:
 - precise measurements of hVV couplings
 - Measurement of VV→VV cross-sections

Couplings of gauge bosons

• VBS processes represent a particularly interesting probe of new physics, as they give a unique access to the couplings of gauge bosons.

Jing Chen

Page . 4

• Effective field theory:

上海交通大學

- Without committing to a specific model, a convenient instrument for testing experimental data against the presence of BSM effects is that of effective field theories (EFTs).

- Assume experimentally accessible energy $E \ll \Lambda \rightarrow$ low-energy approximation for NP.
- $c_{i,j}$: dimensionless, parameterize the strength with which the new physics couples to the SM particles.
- lowest independent aQGC interactions at dimension 8 (dimension 6 also makes aQGC, but also aTGC)

海交通大學

不改道研究近

-Dao Lee Institute

Jing Chen Page . 5

VBS measurements

上海交通大學 | 李达道研究町 SHANGHAI JIAO TONG UNIVERSITY TSUNG-DAO Lee Institute

γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data) NNLO (theory)	······································	····	[fb ⁻¹] 20.2	PLB 7	781 (2018) 55	CMS
$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$	σ = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 fb (data) MCFM NLO (theory)	ATLAS Preliminary		20.3	PRD	93, 112002 (2016)	
$-[n_{ m jet}=0]$	σ = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 fb (data) MCFM NLO (theory)		A	20.3	PRD	02 112002 (2016)	
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2$ fb (data) MCFM NLO (theory)	$\sqrt{s} = 7,8,13 \text{ TeV}$		20.3	PRL	TA7+TA7+··	Phys. Lett. B 809 (2020)
$-[n_{ m jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data) MCFM NLO (theory)			20.3	PRL	<i>W</i> ∸ <i>W</i> ∸ JJ	135710
WWγ→evμvγ	$\sigma = 1.5 \pm 0.9 \pm 0.5$ fb (data) VBFNLO+CT14 (NLO) (theory)	▲		20.2	EPJC		
WWW , (tot.)	$ \begin{aligned} \sigma &= 0.82 \pm 0.01 \pm 0.08 \ \text{pb} \ \text{(data)} \\ \text{NLO QCD (theory)} \\ \sigma &= 230 \pm 200 + 150 - 160 \ \text{fb} \ \text{(data)} \\ \text{Madgraph5} + a\text{MCNLO (theory)} \end{aligned} $	_		139 20.3	arXiv EPJC	W ⁺ W⁻ii	SMP-21-001
– WWW <i>→ℓvℓv</i> jj	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19 \text{ fb (data)}$ Madgraph5 + aMCNLO (theory)			20.3	EPJC	,,,	
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	σ = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 fb (data) Madgraph5 + aMCNLO (theory)			20.3	EPJC		
WWZ, (tot.)	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13$ pb (data) Sherpa 2.2.2 (theory)	Theory		79.8	PLB 3	WZii	Phys. Lett. B 809 (2020)
	$\sigma = 4 \pm 0.3 + 0.3 - 0.4 \text{ pb (data)}$ LHC-HXSWG (theory)	Theory		139	ATLA	<i>\\'\2</i> }	<u>135710</u>
njj v dr	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \text{ pb} (data)$ LHC-HXSWG YR4 (theory)		$\mathbf{\Delta}$	20.3	EPJC		
	$\sigma = 0.79 + 0.11 - 0.1 + 0.16 - 0.12 \text{ pb (data)}$ NNLO QCD and NLO EW (theory)	LHC pp $\sqrt{s} = 13$ leV		139	ATLA	77::	Phys. Lett. B 812 (2020)
– ⊓(→₩₩₩)IJ VBF	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb} (\text{data})$ LHC-HXSWG (theory)	Data	$\mathbf{\Delta}$	20.3	PRD		135992
	$\sigma = 65.2 \pm 4.5 \pm 5.6$ fb (data) LHC-HXSWG (theory)	Stat A syst		139	ATLA		
− H(→γγ)jj VBF	$\sigma = 42.5 \pm 9.8 \pm 3.1 - 3 \text{ fb (data)} \\ \text{LHC-HXSWG (theory)}$		A	20.3	ATLA		
	$\sigma = 49 \pm 17 \pm 6$ fb (data) LHC-HXSWG (theory)	LHC pp $\sqrt{s} = 8$ TeV	0	4.5	ATLA	Zγjj	PRD 104 (2021) 072001
Wjj EWK (M(jj) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9$ fb (data) Powheg+Pythia8 NLO (theory)	Data		20.2	EPJC		
M(::) > 500 Cal	$\sigma = 159 \pm 10 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)	Stat stat syst		20.2	EPJC		
$= M(\Pi) > 200 \text{ GeV}$	$\sigma = 144 \pm 23 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)			4.7	EPJC	Wγji	PLB 811 (2020) 135988
	$\sigma = 37.4 \pm 3.5 \pm 5.5$ fb (data) Herwig7+VBFNLO (theory)	LHC pp $\sqrt{s} = 7$ leV		139	EPJC	•	
	$\sigma = 10.7 \pm 0.9 \pm 1.9$ fb (data) PowhegBox (NLO) (theory)	Data		20.3	JHEP	9 04, 031 (2014)	
Z wii EWK	$\sigma = 4.49 \pm 0.4 \pm 0.42 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$	Stat ⊕ syst		139	ATLA	S-CONF-2021-038	
2/11 2/11	$\sigma = 1.1 \pm 0.5 \pm 0.4$ fb (data) VBFNLO (theory)			20.3	JHEP	07 (2017) 107	
$\gamma \gamma \rightarrow W/W$	$\sigma = 3.13 \pm 0.31 \pm 0.28 \text{ fb (data)} \\ \text{MG5_aMCNLO+Pythia8} \times \text{Surv. Fact (0.82)} \\$	(theory)		139	PLB 8	316 (2021) 136190	
// / / / / / / / / / / / / / / / / / / /	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)}$ HERWIG++ (theory)			20.2	PRD	94 (2016) 032011	
(WV+ZV)jj EWK	$\sigma = 45.1 \pm 8.6 + 15.9 - 14.6 \text{ fb} \text{ (data)} \\ \text{Madgraph5 + aMCNLO + Pythia8 (theory)}$			35.5	PRD	100, 032007 (2019)	
W±W±ii FWK	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28 \text{ fb (data)}$ PowhegBox (theory)			36.1	PRL 1	123, 161801 (2019)	
	$\sigma = 1.5 \pm 0.5 \pm 0.2$ fb (data) PowhegBox (theory)		▲	20.3	PRD	96, 012007 (2017)	
WZII EWK	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05 \text{ fb (data)}$ Sherpa 2.2.2 (theory)			36.1	PLB 7	793 (92019) 469	AILAJ
	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data) VBFNLO (theory)			20.3	PRD	93, 092004 (2016)	_
ZZJJ EWK	$\sigma = 0.82 \pm 0.18 \pm 0.11$ tb (data) Sherpa 2.2.2 (theory)			139	arXiv:	:2004.10612	

data/theory

Jing Chen Page . 6

กโรเ

• VBS observations at the LHC:

13TeV	W [±] W [±] jj	W ⁺ W ⁻ jj	WZjj	ZZjj	Zγjj	Wγjj	$\gamma\gamma \to WW$
ATLAS	6.5 <i>σ</i>	-	5.3σ ★	5.5 <i>σ</i> ★	10σ	-	8.4σ ★
CMS	5.5σ ★	5.6 σ★	6.8σ	4.0 σ	9.4 <i>σ</i> ★	5.3σ ★	-

Jing Chen Page . 7

- 1st observation at LHC: \star Z(ll) γ jj CMS Z($\nu\nu$) γ jj ATLAS
- For VBS processes, many channels have been measured and observed at LHC.
- More details of recent observations will show in the next pages.

Mainly leptonic decay channels, semi-leptonic decay channels are not included.

Same-sign WWjj

不改直研究近

Tsung-Dao Lee Institute

13TeV, 36.1

- Dilepton ch
- Significance
- **Cross-sections:**
 - Measured: $\sigma^{fid} = 2.89^{+0.51}_{-0.48}(stat.)^{+0.24}_{-0.22}(exp.syst.)^{+0.14}_{-0.16}(mod syst.)^{+0.08}_{-0.06}(lumi)fb$
 - Predicted: $2.01^{+0.33}_{-0.23}fb$ (Sherpa)

					//		ושועצו ר		
		1 1		1 1					
$1 f h^{-1}$		e^+e^+	e_e_	$e^{ op}\mu^{ op}$	$e^{-}\mu^{-}$	$\mu^+\mu^+$	$\mu^{-}\mu^{-}$	Combined	
, j <i>b</i>	WZ	1.48 ± 0.32	1.09 ± 0.27	11.6 ± 1.9	7.9 ± 1.4	5.0 ± 0.7	3.4 ± 0.6	30 ± 4	
annel	Non-prompt e/γ conversions Other prompt	2.2 ± 1.1 1.6 ± 0.4 0.16 ± 0.04	1.2 ± 0.0 1.6 ± 0.4 0.14 ± 0.04	5.9 ± 2.5 6.3 ± 1.6 0.90 ± 0.20	4.7 ± 1.0 4.3 ± 1.1 0.63 ± 0.14	0.30 ± 0.03 	0.08 ± 0.13 	13 ± 3 13.9 ± 2.9 2.4 ± 0.5	
	$W^{\pm}W^{\pm}jj$ strong	0.35 ± 0.13	0.11 ± 0.01 0.15 ± 0.05	2.9 ± 1.0	1.2 ± 0.4	1.8 ± 0.6	0.76 ± 0.25	7.2 ± 2.3	
$0.65\sigma(11\sigma)$	Expected background	$5.8~\pm~1.4$	$4.1~\pm~1.1$	28 ± 4	$18.8~\pm~2.6$	$7.7~\pm~0.9$	$5.1~\pm~0.6$	69 ± 7	
c. 0.30(4.40)	$W^{\pm}W^{\pm}jj$ electroweak	$5.6~\pm~1.0$	$2.2~\pm~0.4$	24 ± 5	$9.4~\pm~1.8$	13.4 ± 2.5	$5.1~\pm~1.0$	60 ± 11	
	Data	10	4	44	28	25	11	122	

ATLAS

Phys. Rev. Lett. 123 (2019) 161801

https://atlas.cern/updates/briefing/weak-lightsabers

1st differential measurement

Same-sign WWjj & WZjj

改道研究近

Tsung-Dao Lee Institute

酒交通大學

CMS Phys. Lett. B 809 (2020) 135710

			Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
•	$13T_{O}/ 137fh^{-1}$		(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
•	1316v, 137jb	$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
		$f_{\mathrm{T1}}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
•	Leptonically decay	$f_{\mathrm{T2}}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0 , 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
	Loptomouny doody	$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7 <i>,</i> 2.9]	[-3.6, 3.7]
		$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
•	Significance(WZ):	$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4 <i>,</i> 5.8]	[-7.2, 7.3]
		$f_{ m M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
	$6.8\sigma(5.3\sigma)$	$f_{\mathrm{S0}}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7 <i>,</i> 6.1]	[-5.9, 6.2]
		$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]

- Constraints are obtained on the structure of quartic vector boson interactions in the framework of EFT.
- Differential fiducial crosssections also measured.

W⁺W⁻jj

• 13TeV, 138*fb*⁻¹

海交通大學

放道研究近

Tsung-Dao Lee Institute

F

- Two opposite-sign leptons(e or μ)
- Main background: QCD W⁺W⁻, tt
 ,DY
- Significance: $5.6\sigma(5.2\sigma)$
- Cross-sections:

 $\sigma_{EW} = 10.2 \pm 2.0 fb$ $\sigma_{EW}^{Pred} = 9.1 \pm 0.6 fb$

ZZjj

ATLAS <u>arXiv:2004.10612</u>

- 13TeV, 139*fb*⁻¹
- Measure the inclusive ZZjj crosssection (EW + QCD)
- Evidence on EW-ZZjj production
 - Combine *lllljj* and *llvvjj*, fit the multivariate analysis (MVA) output to extract the significance of EW component and signal strength

-Dao Lee Institute

Two channels: *lllljj*, *llvvjj*

- Backgrounds:
 - *lllljj*: QCD background, fake lepton background, WWZ...
 - *llvvjj*: Non-Resonant background,
 WZ background, Z+jets background,
 ZZ → *llll*,VVV, ttV, ttVV

Nature Physics has accepted the paper and now the team is working on • proofing and journal layout quality control.

-0.8 -0.6 -0.4 -0.2 0

Significance: 5.5 σ (4.3 σ) $\sigma_{EW-ZZjj} = \mu_{EW} \times \sigma_{SM} = 0.82 \pm 0.21 fb$

0.75 Data 0.5 0.5 _1

0.5

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4 0.6

0.8

MD

https://atlas.cern/updates/briefing/milestone-electroweak-symmetry-breaking

0.2 0.4 0.6

0.8

MD

0.5

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4

0.8 0.6

MD

ZZjj

- 13TeV, 137*fb*⁻¹
- Channel: $ZZ \rightarrow lll'l'$
- Discriminant based on a matrix element likelihood approach (MELA) for EW and EW+QCD measurements.

研究町

-Dao Lee Institute

- Significance: $4.0\sigma(3.5\sigma)$
- Cross-sections:

$$\sigma_{EW} = 0.33^{+0.11}_{-0.10} (stat.)^{+0.04}_{-0.03} (syst.) fb$$

 $\sigma_{EW}^{pred} = 0.275 \pm 0.021 fb$

CMS Phys. Lett. B 812 (2020) 135992

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{ m T0}/\Lambda^4$	-0.37	0.35	-0.24	0.22	2.4
$f_{ m T1}/\Lambda^4$	-0.49	0.49	-0.31	0.31	2.6
$f_{\mathrm{T2}}/\Lambda^4$	-0.98	0.95	-0.63	0.59	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43	0.43	1.8
$f_{ m T9}/\Lambda^4$	-1.5	1.5	-0.92	0.92	1.8

<mark>Ζ(II)</mark>γjj

• 13TeV, 139*fb*⁻¹

海交通大學

IIAO TONG UNIVERSITY

- Channel: $Z(\rightarrow ee/\mu\mu)\gamma jj$
- EW component is extracted with a maximum likelihood on m_{jj} distribution.

改善研究近

Tsung-Dao Lee Institute

- Simultaneously fit in SR and CR.
- Significance: $10\sigma(11\sigma)$
- Cross-sections:

$$\begin{split} \sigma_{EW} &= 4.49 \pm 0.40(stat.) \pm 0.42(syst.)fb \\ \sigma_{EW}^{pred} &= 4.73 \pm 0.01(stat.) \\ &\pm 0.15(PDF)^{+0.23}_{-0.22}(scale)fb \\ \sigma_{EW+QCD} &= 20.6 \pm 0.6(stat.)^{+1.2}_{-1.0}(syst.)fb \\ \sigma_{EW}^{pred} &= 20.4 \pm 0.1(stat.) \\ &\pm 0.2(PDF)^{+2.6}_{-2.0}(scale)fb \end{split}$$

<mark>Ζ(II)</mark>γjj

• 13TeV, $137fb^{-1}$ • Channel: $Z(\rightarrow ee/\mu\mu)\gamma jj$

首研究听

- Simultaneously fit in the SR with 2D m_{jj} $\Delta \eta_{jj}$ binning and the CR with 1D m_{jj} binning in 4 categories for μ /e and barrel/endcap photon.
- Significance: $9.4\sigma(8.5\sigma)$

交通大學

 Exclusion limits on aQGC are derived at 95% CL in terms of the EFT operators M₀ to M₅, M₇, T₀ to T₂, and T₅ to T₉.

CMS

Jing Chen

Page . 16

PRD 104 (2021) 072001

ao Lee Institute

$Z(\nu\nu)\gamma jj$

13TeV, 139*fb*⁻¹

交通大學

- Channel: $Z(\rightarrow \nu\nu)\gamma jj$
- Main background: QCD • $Z\gamma jj, W\gamma jj(W \rightarrow l\nu, lepton$ not reconstructed in detector)
- Significance: $5.2\sigma(5.1\sigma)$

ATLAS

1st Observation of EW $Z\gamma$ jj process in neutrino channels

- Similar signatures used to provide strong constraints for: ٠
 - Invisible Higgs decay search: $H(\rightarrow inv.)\gamma jj$ Branching 0.37 $(0.34^{+0.15}_{-0.10})$ Higgs to dark photon: $H(\rightarrow \gamma \gamma_d) jj$ ratio,95%CL 0.018 $(0.017^{+0.007}_{-0.005})$

Jing Chen

Page. 17

Eur. Phys. J. C 82 (2022) 105

海交通大學

波道研究近

-Dao Lee Institute

CMS

35.9 fb⁻¹ (13 TeV)

CMS PLB 811 (2020) 135988

Jing Chen

Page . 18

- 13TeV, 35.9*fb*⁻¹
- First observation of EW Wγ production w/ leptonic final states.
- Significance: 5.3σ(4.8σ) combining CMS 13TeV & 8TeV datasets.
- Cross-sections:

 $\sigma_{EW} = 20.4 \pm 4.5 fb$ $\sigma_{EW+QCD} = 108 \pm 16 fb$

 Constraints are placed on aQGC in terms of dimension-8 EFT operators.

$\gamma\gamma ightarrow WW$

海交通大学

- 13TeV, 139*fb*⁻¹
- Photon-induced production of Wboson pairs, $WW \rightarrow e^{\pm} \nu \mu^{\pm} \nu$

直研究听

- $\gamma \gamma \rightarrow WW$:
 - Trilinear and quartic gauge boson interactions.
 - At LO, only involves diagrams with selfcouplings of the EW gauge bosons.
- Signal process: $pp(\gamma\gamma) \rightarrow p^*W^+W^-p^*$

Directly test the gauge structure of the EW.

ATLAS Phys. Lett. B 816 (2021) 136190

Sensitive to aTGC, aQGC.

double-dissociative

 $\gamma\gamma \rightarrow WW$

• Signal characteristics:

 $n_{trk} = 0$

Quark- and gluon-induced WW or top-quark production

еμ

 $\gamma \gamma \to ll$ $p_T^{e\mu} > 30 GeV$ $\gamma \gamma \to \tau \tau$

- Events / 5 GeV 12000 1200 Events / 5 GeV ATLAS ATLAS 2000 150 √s = 13 TeV, 139 fb⁻¹ √s = 13 TeV, 139 fb⁻ $n_{trk} = 0$ $1 \le n_{trk} \le 4$ Data Data $\gamma\gamma \rightarrow WW$ $\gamma\gamma \rightarrow WW$ γγ→ττ $\gamma\gamma \rightarrow \tau\tau$ 100 Drell-Yan Drell-Yan qq→WW aa→WW 1000 Non-prompt Non-prompt Other gg initiated Other qq initiated Fotal uncertainty Total uncertainty 50 500 **** 1.4 1.4 Data / Pred. Data / Pred. 1.2 0.8 0.6 0.6 20 40 60 80 100 0 20 40 60 80 100 12 0 120 $p_{\tau}^{e\mu}$ [GeV] p_{_{T}}^{e\mu} [GeV]
- Significance: $8.4\sigma(6.7\sigma)$
- Cross-sections:
 - measured: $3.13 \pm 0.31(stat.) \pm 0.28(syst.)fb$
 - predicted: $3.5 \pm 1.0 fb$

VBS observations in ATLAS and CMS:

VWSS

More details of CMS $Z\gamma$, $W\gamma$ measurements can be found in

Measurement of the electroweak production of Zy and two jets in protonproton collisions at sqrt(s) = 13 TeV and constraints on anomalous quartic gauge couplings

Measurement of electroweak production of Wgamma with two jets in Jing Peng \rightarrow proton-proton collisions at sqrt(s) = 13 TeV from CMS

sWWjj, osWWjj, WZjj, ZZjj, Z
$$\gamma$$
jj, W γ jj, $\gamma\gamma \rightarrow V$
EFT interpretation

Jing Chen Page . 21

$$\rightarrow$$
 Ying An

Backup

EW-VVjj production at 13TeV

上海交通大學 | 李旼道研究町

Tsung-Dao Lee Institute

VVjj	final states	$\sigma(VVjj\text{-}\mathrm{EW})/\mathrm{fb}$	$\sigma(VVjj\text{-}\text{QCD})/\text{fb}$	
$W^{\pm}W^{\pm}$	$\ell u \ell u j j$	4.28 ± 0.01	1.69 ± 0.02	Philipp Anger's thesis
	0 0	15 55 1 0 00	25 24 1 0 12	
W ' W	ℓνℓν <u></u> ງງ	15.57 ± 0.08	35.24 ± 0.13	Production cross-
ZZ	$\ell\ell u u j j$	0.39 ± 0.01	0.55 ± 0.01	section for EW and QCD VVjj production:
ZV	$\ell\ell j j j j$	0.98 ± 0.07	3.13 ± 0.22	-All results are
$Z\gamma$	$\ell\ell\gamma jj$	9.24 ± 0.02	71.28 ± 0.33	
WZ	$\ell u \ell \ell j j$	2.36 ± 0.01	7.19 ± 0.01	-Pre-VBS cuts
ZZ	$\ell\ell\ell\ell jj$	0.12 ± 0.01	0.21 ± 0.01	applied

Jing Chen Page . 23

NIL N

โรมาน

Π

ssWWjj

Source	Impact $[\%]$
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}ii$ electroweak. EW corrections	14

ATLAS

0-tagging	Z.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

ี โรมาน

WZjj

ATLAS

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

• Event yields:

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
$\operatorname{QCD} ZZjj$	77 ± 25	17.2 ± 3.5
$\operatorname{QCD} ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	_	21.4 ± 4.8
WZ	—	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

$$C = \frac{N_{detector-level}}{N_{FV-truth}} \ \sigma = \frac{N_{data} - N_{background}}{\mathcal{L} \times C}$$

• Cross-sections:

 The definition of fiducial regions are very similar with detector-level selections by using particle-level physics objects.

ATLAS

 Fiducial cross-sections for the inclusive production of the EW and QCD processes are measured separately in individual channels.

<i>lllljj</i> C factor	0.699 ± 0.031
<i>llvvjj</i> C factor	0.216 <u>+</u> 0.012

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\exp) \pm 0.01 (\text{bkg}) \pm 0.03 (\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$\ell\ell u ujj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Jing Chen Page . 27

• Theoretical uncertainties:

- PDF, QCD scale, α_s , parton showering (PS).

- Interference effect between the EW and QCD processes is 6.8%(2.3%) in *lllljj(llvvjj*) channel. Treat as an extra uncertainty in the EW signal predictions.

- **Generator modelling uncertainty:** estimated by comparing Sherpa with MadGraph5 _aMC@NLO 2.6.1 predictions at particle level.

Experimental uncertainties:

- luminosity: 1.7%.
- The momentum scale and resolution of leptons and jets, lepton reconstruction and selection efficiencies, trigger selection efficiency, the calculation of the E_T^{miss} soft-term, the pile-up correction, and the b-jet identification efficiency: 5-10%.
- Jet pile-up uncertainty.

海交通大學

Ζγϳϳ

- 13TeV, 139*fb*⁻¹
- Channel: $Z(\rightarrow ee/\mu\mu)\gamma jj$

波道研究近

Tsung-Dao Lee Institute

Ζγϳϳ

ATLAS

Source	Size $[\%]$
Electron/photon calibration	± 0.3
Photon	± 0.3
Backgrounds	± 1.0
Electron	± 1.1
Flavour tagging	± 1.1
Muon	± 1.1
MC stat.	± 1.4
Pileup	± 2.6
Jets	\pm 4.7
QCD - $Z\gamma jj$ modelling	$^{+4.8}_{-4.3}$
EW - $Z\gamma jj \text{ modelling}$	$+5.7 \\ -4.6$
Data stat.	\pm 8.8
Total	$+13.4 \\ -12.6$

۳

	ATLAS	
$\gamma \rightarrow \nu \nu \nu \nu$		
Source of uncertainty	Impact [% of the fitted cross section]	
Experimental		
Track reconstruction	1.1	
Electron energy scale and resolution, and efficiency	0.4	
Muon momentum scale and resolution, and efficiency	0.5	
Misidentified leptons, systematic	1.5	
Misidentified leptons, statistical	5.9	
Other background, statistical	3.2	
Modelling		
Pile-up modelling	1.1	
Underlying-event modelling	1.4	
Signal modelling	2.1	
WW modelling	4.0	
Other background modelling	1.7	
Luminosity	1.7	
Total	8.9	