

Institute of High Energy Physics Chinese Academy of Sciences

Prospects of electroweakino and slepton search at CEPC

Jiarong Yuan(IHEP, CAS)

2022/8/11

- Supersymmetry describes physics beyond Standard Model, with a symmetry between bosons and fermions.
 - Hierarchy problem
 - Grand unification of gauge couplings
 - Dark matter candidate
- R-parity: $P_R = (-1)^{3(B-L)+2S}$: Sparticles \rightarrow negative P_R , SM particles \rightarrow positive P_R .
 - R conserved: Sparticles are produced in pairs, Lightest SUSY particle (LSP) is stable as a dark matter candidate.
- Minimal Supersymmetric Standard Model (MSSM)
 - One superpartner for each SM particle

Signal scenarios

 μ^{\pm}

 μ^{\mp}

 e^{\pm}

 e^{\mp}

 e^{\pm}

 e^{\mp}

 e^{\pm}

 e^{\mp}

• Final state: 2 opposite-sign(OS) muon and Missing transverse energy E_T^{miss}

- Direct production of stau pair
 - Final state: 2 OS tau and E_T^{miss}

arXiv:2203.10580 *Chinese Phys.* C 46 013104

 W^{\pm}

CEPC

- CEPC(baseline)
 - A particle flow oriented detector uses an ultra high granularity calorimetry system, a low material silicon tracker and a 3 Tesla magnitude field.
 - *E_{cm}*: 240 GeV, Luminosity: 5050 fb⁻¹

- Software Chain
 - Signal samples generation: MadGraph+Pythia
 - Standard Model sample generation: Whizard+Pythia
 - Simulation: MokkaC
 - Reconstruction tool: Marlin

Direct Smuon production

- The signal grid is in the $\tilde{\mu}$ and LSP mass phase space.
- The μ̃ mass ranges from 80 GeV (LEP limit) to ~<120 GeV (CEPC √s/2), the LSP mass ranges from 1 GeV (nearly massless) to ~<μ̃ mass.
- The kinematic distributions of signals are affected by $\Delta M(\tilde{\mu}, \tilde{\chi}_1^0)$.
- Performed a multi-dimension optimization, and defined 3 signal regions.
- Large DeltaM, high μ p_T, low M_{recoil} . Small DeltaM, low μ p_T, high M_{recoil} .
- Recoil system: All final state objects except the 2 OS leptons.
- For each signal point in the phase space, choose the signal region with highest Zn.

2022/8/11

Direct Smuon production

- For direct smuon production, assuming flat 5% systematic uncertainty, the discovery sensitivity can reach 117 GeV.
- Systematic uncertainty slightly affect the sensitivity.

Direct Stau production

- The signal grid is in the $\tilde{\tau}$ and LSP mass phase space.
- The τ̃ mass ranges from 80 GeV (LEP limit) to ~<120 GeV(CEPC √s/2), LSP mass ranges from 1 GeV(nearly massless) to ~< τ̃ mass.
- The kinematic distributions of signals are influenced by ΔM(τ̃, χ̃₁⁰), so we define 3 signal regions.
- For each signal point, use the signal region with highest Zn.
- Use the minus(positive) charged leading track to represent the $\tau^{-}(\tau^{+})$ for simplicity.

midDeltaM

- For direct stau production, with left/right-handed combined(only) stau, assuming flat 5% systematic uncertainty, the discovery sensitivity can reach 116(113) GeV.
- Systematic uncertainty slightly affect the sensitivity.

(a) systematic uncertainty = 5% (b) comparison between systematic uncertainty = 0% and 5 %

Chargino pair production(Bino LSP)

- The signal grid is in the wino($\tilde{\chi}_1^{\pm}$) and bino($\tilde{\chi}_1^0$) mass phase space.
- The wino mass is bounded by LEP ans CEPC limits, bino mass is bounded by wino mass W^{\pm} mass.
- Consider final states with 2 OS μ with energy larger than 10 GeV.

 ℓ^{\pm}

ℓŦ

 $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_2^\pm$

 $ilde{\chi}^0_2,\, ilde{\chi}^\pm_1$

 ${\tilde \chi}_1^\pm \ W^\pm$

 W^{\mp}

 $\tilde{\chi}_1^+$

higgsino

wino

 e^{\pm}

 e^{\mp}

 M_2

• The discovery potential can reach the kinematic limit $\sqrt{s}/2$ and isn't sensitive to systematic uncertainties.

- The signal grid is in μ and $\tan \beta$ phase space.
- $|\Delta \phi(\mu^{\pm}, recoil)| < 2.9$ suppresses muon and recoil system back to back.
- $|\Delta \phi(\mu^+, \mu^-)| < 1.4$ rejects 2 muons back to back
- small $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) < 2 \text{ GeV} \rightarrow \text{soft muon, large } M_{recoil}$

The discovery sensitivity can again reach the kinematic limit $\sqrt{s}/2$ and isn't sensitive to systematic uncertainties and mass splitting between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$.

Summary

Several searches for electroweakino and slepton are performed at CEPC. ٠

• The discovery potential is close to kinematic limit $\sqrt{s}/2$.

The End

Backup

- Signal scenarios
 - Direct production of stau pairs
 - > DM relic density consistent with cosmology observation
 - Direct production of smuon pairs
 - can explain g-2 excess
 - Production of chargino pairs decaying via W bosons
 - Bino LSP, large cross section, dark matter arguments
 - > Higgsino LSP, interesting related with higgs, naturalness considerations.

Current status from LEP and LHC

Tracking software
TPC
Clupatra
VTX
SIT
FTD
FTD
Merging
Tracking software
Tracking
Tracking
FullLDCTracking

- Particle Flow Object reconstruction: Particle Flow Algorithm Arbor
- Lepton identification: LICH based on Multivariate Data Analysis (TMVA)

• The efficiency of lepton identification for e^- , μ^- and π^+ as function of particle energy in the four regions.

