

Prospects for detecting axion-like particles at future electron-positron colliders

Han Wang

Liaoning Normal University

中国物理学会高能物理分会 第十一届全国会员代表大会暨学术年会 2022.08.11

Based on Phys. Rev. D 105, 115027 (2022), 2204.04702 with C.-X. Yue, S. Yang and N. Zhang Another paper is accepted by J. Phys. G with C.-X. Yue and Y.-C. Guo

1.1 Properties of axion-like particles

- Many new physics scenarios beyond the standard model (SM) predict the existence of axion-like particles (ALPs), which are generalizations of QCD axions proposed as a solution to the strong CP problem.
- The ALP is a CP-odd neutral pseudoscalar particle of the broken global symmetry at high scale and a singlet under the SM gauge group.
- The masses of ALPs and couplings to the SM particles are considered to be independent parameters.

1.2 Effective interactions of ALP

The effective interactions of ALP with the SM particles:

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_a^2 a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{\psi = Q_L, Q_R, \atop L_L, L_R} \overline{\psi} \gamma_{\mu} X_{\psi} \psi - C_{\tilde{B}} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} - C_{\tilde{W}} \frac{a}{f_a} W^i_{\mu\nu} \tilde{W}^{i\mu\nu}$$

 m_a : the mass of ALP

 f_a : the characteristic scale

 $W_{\mu\nu}^{i}$ and $B_{\mu\nu}$: the field strength tensors of $SU(2)_{L}$ and $U(1)_{Y}$

 $C_{\tilde{W}}$ and $C_{\tilde{B}}$: the coupling constants

 X_{ψ} : Hermitian matrices in flavour space

1 Introduction

After electroweak symmetry breaking:

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} + i \mathcal{G}_{a\psi} a \sum_{\psi = Q,L} m_{\psi}^{diag} \overline{\psi} \gamma_{5} \psi$$
$$- \frac{1}{4} \mathcal{G}_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} \mathcal{G}_{aZZ} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{4} \mathcal{G}_{a\gamma Z} a F_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{4} \mathcal{G}_{aWW} a W_{\mu\nu} \tilde{W}^{\mu\nu}$$

 m_{w}^{diag} : the diagonalizable fermion mass matrix

- $F_{\mu\nu}$: the photon field strength tensor
- $Z_{\mu\nu}$: the Z boson field strength tensor
- $W_{\mu\nu}$: the *W* boson field strength tensor

all the couplings $\mathcal{G}_{a\gamma\gamma}$, \mathcal{G}_{aZZ} , $\mathcal{G}_{aZ\gamma}$, \mathcal{G}_{aWW} and $\mathcal{G}_{a\psi}$ are governed by f_a

where

$$\begin{aligned} \mathcal{G}_{a\gamma\gamma} &= \frac{4}{f_a} (c_W^2 C_{\tilde{B}} + s_W^2 C_{\tilde{W}}), \quad \mathcal{G}_{aZZ} = \frac{4}{f_a} (s_W^2 C_{\tilde{B}} + c_W^2 C_{\tilde{W}}), \\ \mathcal{G}_{a\gamma Z} &= \frac{8}{f_a} s_W c_W (C_{\tilde{W}} - C_{\tilde{B}}), \quad \mathcal{G}_{aWW} = \frac{4}{f_a} C_{\tilde{W}} \end{aligned}$$

 s_w and c_w : the sine and cosine of the weak mixing angle

1 Introduction

D. d'Enterria, in Workshop on Feebly Interacting Particles (2021), 2102.08971

1.3 The constraints on the effective couplings of ALP to the SM electrons or bosons

M. Bauer, M. Neubert, and A. Thamm, JHEP 12, 044 (2017), 1708.00443

Existing constraints on the ALP–electron coupling (left) and ALP–photon coupling (right) from cosmological, astrophysical, and accelerator searches. $\frac{7}{7}$

Introduction

M. B. Gavela, J. M. No, V. Sanz, and J. F. de Trocóniz,

J. Bonilla, I. Brivio, J. Machado-Rodríguez, and J. F. de Trocóniz,

Bounds on the ALP coupling \mathcal{G}_{aZZ} (left) and ALP coupling $\mathcal{G}_{a\gamma Z}$ (right).

8

2.1 Future circular e^+e^- colliders

Run plan for the Future Circular Collider (FCC-ee)

Phase	Run duration (years)	Centre-of-mass energies (GeV)	Integrated lumi- nosity (ab ⁻¹)	Event statistics
FCC-ee-Z	4	88–95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt(1)	1	340-350	0.2	tt threshold scan
FCC-ee-tt(2)	4	365	1.5	10^6 tt events

Run plan for the Circular Electron-Positron Collider (CEPC)

Particle	Ec.m. (GeV)	L per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated L per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of particles
Η	240	3	0.8	7	5.6	1×10^{6}
Z	91	32 (*)	8	2	16	7×10^{11}
W^+W^-	160	10	2.6	1	2.6	1.5×10^{7}
		1 10	11 COTT 1 1	• •	a *	0

(*) Assuming detector solenoid field of 2 Tesla during Z operation

- For $m_a < m_Z$, there exits rare decay channel $Z \rightarrow a f \overline{f}$. The mass of ALP : 5 GeV $\le m_a \le 70$ GeV.
- The relevant measurements of the channel $Z \rightarrow av\overline{v}$ could be used to extract the *aZZ* coupling directly.
- The channel $Z \rightarrow af \overline{f}$ with f being charged leptons or quarks is more sensitive to the coupling $a\gamma Z$.

- Focusing on the decay channels $a \to \mu^+ \mu^-$ and $a \to b\overline{b}$.
- Four types of exotic Z decay signals Z → μ⁺μ⁻E, bbE, e⁺e⁻μ⁺μ⁻ and e⁺e⁻bb are studied.

Tools use	d: FeynRules	
	MadGraph5_aMC@NLO	MADGRAPH 5
	PYTHIA 8	
	DELPHES	DELPHES fast simulation
	MadAnalysis 5	Mab Analysis

- $E_{CM} = 91.2 \text{ GeV}$
- Basic cuts:

 $P_T(l, j) > 10 \, \text{GeV}$

E > 10 GeV

$\left|\eta(l,j)\right| < 2.5$

 $\theta_{ij}(l,l) > 0.2, \theta_{ij}(j,j) > 0.4$

A. $Z \to \mu^+ \mu^- E$ the exotic decay $Z \to a_V \overline{\nu}$ followed by $a \to \mu^+ \mu^-$

A. $Z \to \mu^+ \mu^- E$ the exotic decay $Z \to a_V \overline{V}$ followed by $a \to \mu^+ \mu^-$

•
$$\left| m_{\mu^+\mu^-} - m_a \right| < 3 \, \text{GeV} \, (\text{Cut 1-A})$$

Cuts	Cross sections for signal(background) (fb)					
	$m_a = 5 \text{GeV}$	$m_a = 10 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$	
Basic cuts	0.3406(0.2602)	0.3177(0.2602)	0.2368(0.2602)	0.0358(0.2602)	0.0062(0.2602)	
Cut 1-A	0.3404(0.0059)	0.3175(0.0072)	0.2335(0.0300)	0.0343(0.0342)	0.0058(0.0195)	
$S/\sqrt{S+B}$	18.29	17.62	14.38	5.59	1.16	

• $g_{aZZ} = 0.5 \,\mathrm{TeV}^{-1}$

• $\mathcal{L} = 1 \text{ ab}^{-1}$

B. $Z \rightarrow b\bar{b}E$ the exotic decay $Z \rightarrow a\nu\bar{\nu}$ followed by $a \rightarrow b\bar{b}$

• $|m_{bb} - m_a| < 5 \,\text{GeV} \,(\text{Cut 1-B})$

Cuts	Cross sections for signal(background) (fb)				
	$m_a = 15 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 40 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$
Basic cuts	0.0460(0.7172)	0.03345(0.7172)	0.0284(0.7172)	0.0142(0.7172)	0.0134(0.7172)
Cut 1-B	0.0449(0.0126)	0.0279(0.08387)	0.0199(0.1832)	0.0078(0.2115)	0.0015(0.1364)
$S/\sqrt{S+B}$	5.92	2.64	1.39	0.53	0.12

• $\mathcal{G}_{aZZ} = 0.5 \,\mathrm{TeV}^{-1}$

C. $Z \rightarrow e^+ e^- \mu^+ \mu^-$ the exotic decay $Z \rightarrow a \ e^+ e^-$ followed by $a \rightarrow \mu^+ \mu^-$

C. $Z \rightarrow e^+ e^- \mu^+ \mu^-$ the exotic decay $Z \rightarrow a \ e^+ e^-$ followed by $a \rightarrow \mu^+ \mu^-$

17

C. $Z \rightarrow e^+ e^- \mu^+ \mu^-$ the exotic decay $Z \rightarrow a \ e^+ e^-$ followed by $a \rightarrow \mu^+ \mu^-$

- $m_{e^+e^-} < 30 \,\text{GeV}$ (Cut 1-C)
- $\left| m_{\mu^+ \mu^-} m_a \right| < 3 \, \text{GeV} \, (\text{Cut 2-C})$

Cuts	Cross sections for signal(background) (fb)				
	$m_a = 5 \text{GeV}$	$m_a = 10 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$
Basic cuts	1.5314(8.0284)	1.4735(8.0284)	1.1559(8.0284)	0.4615(8.0284)	0.1067(8.0284)
Cut 1-C	1.2659(3.4300)	1.2231(3.4300)	0.9318(3.4300)	0.4258(3.4300)	0.1065(3.4300)
Cut 2-C	1.2659(0.1743)	1.2215(0.1623)	0.9143(0.1689)	0.4066(0.6499)	0.1005(0.5635)
$S/\sqrt{S+B}$	33.36	32.83	27.78	12.51	3.90

• $\mathcal{G}_{a\gamma Z} = 0.5 \text{ TeV}^{-1}$

•
$$\mathcal{L} = 1 \text{ ab}^{-1}$$

D. $Z \rightarrow e^+e^-b\overline{b}$ the exotic decay $Z \rightarrow a \ e^+e^-$ followed by $a \rightarrow b\overline{b}$

- $m_{e^+e^-} < 30 \text{ GeV} (\text{Cut 1-D})$
- $|m_{bb} m_a| < 5 \text{ GeV} (\text{Cut 2-D})$

Casta	Cross sections for signal(background) (fb)					
Cuts	$m_a = 15 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 40 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$	
Basic cuts	0.2058(2.7076)	0.2497(2.7076)	0.1874(2.7076)	0.1191(2.7076)	0.0354(2.7076)	
Cut 1-D	0.1711(1.8332)	0.2251(1.8332)	0.1658(1.8332)	0.1103(1.8332)	0.0353(1.8332)	
Cut 2-D	0.1694(0.1417)	0.1763(0.2081)	0.1106(0.3301)	0.0617(0.5102)	0.0160(0.4212)	
$S/\sqrt{S+B}$	9.61	8.99	5.27	2.58	0.76	

•
$$\mathcal{G}_{a\gamma Z} = 0.5 \,\mathrm{TeV}^{-1}$$

2 Detecting ALPS via the decay $Z \rightarrow af\bar{f}$ at future Z factories

• 3σ and 5σ discovery curves in the planes (m_a, \mathcal{G}_{aZZ}) and $(m_a, \mathcal{G}_{a\gamma Z})$:

• For 5 GeV $\leq m_a \leq 20$ GeV, the $\mu^+ \mu^- E$ and $e^+ e^- \mu^+ \mu^-$ signals can probe the couplings \mathcal{G}_{aZZ} and $\mathcal{G}_{a\gamma Z}$ down to 0.1 TeV⁻¹.

2.3 Results

Sensitivity bounds on \mathcal{G}_{aZZ} (left) and $\mathcal{G}_{a\gamma Z}$ (right) at 95% C.L. from exotic Z decays and other current exclusion regions.

• Compared to the LHC, the future Z factories are more sensitive to \mathcal{G}_{aZZ} and $\mathcal{G}_{a\gamma Z}$ via these four channels for m_a in the range from 5GeV to tens GeV.

3.1 Searching for ALP via the triphoton production at the 240 GeV CEPC Accepted by J. Phys. G

- Assuming $C_{\tilde{W}} = C_{\tilde{B}}$ and there are $\mathcal{G}_{a\gamma\gamma} = \mathcal{G}_{aZZ} = \mathcal{G}_{aWW}$ and $\mathcal{G}_{a\gamma Z} = 0$.
- The Feynman diagrams for the process of $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$:

- The mass of ALP : $1 \text{GeV} < m_a \le 200 \text{GeV}$
- The cross section of the process $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$ as a function of the ALP mass m_a :

• Basic cuts:

$$p_T^{\gamma} > 10 \text{ GeV}$$

 $\left| \eta_{\gamma} \right| < 2.5$
 $\Delta R_{\gamma\gamma} > 0.2 \qquad (\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2})$

Tools added:

CutExperiment https://github.com/NBAlexis/CutExperiment

- The angular separation of the two photons from ALP decay strongly depends on the ALP mass.
 - The ALP mass less than 20 GeV $\longrightarrow N_{\gamma} \ge 1$

the invariant mass of all final state photons m_{γ}

the transverse momentum of the hardest photon in the final states $p_T^{\gamma_1}$

observables

• The ALP mass is higher than 20 GeV $\longrightarrow N_{\gamma} \ge 3$

Searching for ALPs at the CEPC

• The symbols γ_1 , γ_2 and γ_3 : The photons with the largest, intermediate and smallest momentum.

• For the ALP with high (low) mass, the ALP tends to decay into $\gamma_1 \gamma_2 (\gamma_2 \gamma_3)$.

• The improved cuts:

mass Cut	$1 \text{ GeV} < m_a \le 20 \text{ GeV}$	$20 \text{ GeV} < m_a \le 200 \text{ GeV}$
Cut1	$N_{\gamma} \ge 1$	$N_{\gamma} \ge 3$
Cut2	$m_{\gamma} \leq 20~{ m GeV}$	$ \eta_{\gamma_1} < 1.7$
Cut3	$p_T^{\gamma_1} \ge 20 \; { m GeV}$	$E_T \ge 100 \text{ GeV}$
Cut4		$ m_{\gamma\gamma} - m_a \le 5 \mathrm{GeV}$

		cro	ss sections for signal(background)	[pb]		
<i>m</i> _a [GeV]	Basic Cuts	Basic Cuts Cut1		Cut3	Cut4	- <u>S</u> S
10	$6.5893 imes 10^{-4}$ (0.2851)	6.5303×10^{-4} (0.2850)	$5.8278 imes 10^{-4} (0.0087)$	$5.8259 imes 10^{-4} (0.0086)$	-	14.38
20	$9.0768 imes 10^{-4} (0.2851)$	9.0260×10^{-4} (0.2850)	4.9382×10^{-4} (0.0087)	$4.9369 imes 10^{-4} (0.0086)$	-	12.24
40	$8.9170 imes 10^{-4} (0.2851)$	8.1998×10^{-4} (0.2679)	7.7072×10^{-4} (0.1842)	$7.5997 imes 10^{-4} (0.1739)$	$7.5569 \times 10^{-4} (0.0202)$	12.35
80	$8.0760 imes 10^{-4}$ (0.2851)	7.3533×10^{-4} (0.2679)	6.8321×10^{-4} (0.1842)	6.7924×10^{-4} (0.1739)	$5.4713 \times 10^{-4} (0.0178)$	9.56
120	$5.0300 imes 10^{-4}$ (0.2851)	4.5322×10^{-4} (0.2679)	4.2267×10^{-4} (0.1842)	4.2141×10^{-4} (0.1739)	2.8405×10^{-4} (0.0189)	4.85
140	3.4438×10^{-4} (0.2851)	3.0861×10^{-4} (0.2679)	$2.8993 imes 10^{-4}$ (0.1842)	2.8918×10^{-4} (0.1739)	2.5867×10^{-4} (0.0204)	4.26
160	2.0613×10^{-4} (0.2851)	1.8364×10^{-4} (0.2679)	$1.7283 imes 10^{-4}$ (0.1842)	1.7234×10^{-4} (0.1739)	1.2056×10^{-4} (0.0103)	2.80
200	3.0873×10^{-5} (0.2851)	$2.7060 \times 10^{-5}(0.2679)$	2.5737×10^{-5} (0.1842)	2.5585×10^{-5} (0.1739)	$2.3273 \times 10^{-5}(0.0251)$	0.35

•
$$\mathcal{G}_{a\gamma\gamma} = 10^{-4} \,\mathrm{GeV}^{-1}$$

• $\mathcal{L} = 5.6 \, \mathrm{ab}^{-1}$

• The 3σ and 5σ curves for the process $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$ in the $(m_{a,} \mathcal{G}_{a\gamma\gamma})$ plane:

• The expected bounds on $\mathcal{G}_{a\gamma\gamma}$ can reach $4 \times 10^{-5} \text{ GeV}^{-1} (5 \times 10^{-5} \text{ GeV}^{-1})$ at $3\sigma (5\sigma)$ levels.

3.2 Results

The projected CEPC sensitivity region for the process $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$ as well as other current and prospective limits on $\mathcal{G}_{a\gamma\gamma}$.

• The promising sensitivities as $\mathcal{G}_{a\gamma\gamma} \in [3.25 \times 10^{-5}, 3.7 \times 10^{-4}] \text{GeV}^{-1}$ with $m_a \in [2.9, 190] \text{ GeV}$ at 2σ level.

• ALPs appear naturally in broad extensions of the SM, which have various beneficial properties to search by many experiments.

The exotic decay channel Z → af f is promising for probing ALPs.
 It is expected that the future Z factories could discover or exclude ALPs with m_a in the range of 5 GeV - 70 GeV.

• The promising sensitivities of the CEPC to the coupling $\mathcal{G}_{a\gamma\gamma}$ are in the range of $3.25 \times 10^{-5} \,\text{GeV}^{-1}$ to $3.7 \times 10^{-4} \,\text{GeV}^{-1}$ with m_a from 2.9 GeV to 190 GeV.

