不改通研究听 **Tsung-Dao Lee Institute**

Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collision data at $\sqrt{s}=13$ TeV

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Changqiao Li SJTU/TDLI

Aug 11th, 2022

Introduction

- are precisely studied
- Higgs self-interaction is also crucial
 - Probe of the shape of the Higgs potential $V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$

$$= V_0 + \frac{1}{2}m_h^2 h^2 + \frac{m_h^2}{2v^2}vh^3 + \frac{1}{4}\frac{m_h^2}{2v^2}h^4 \qquad \lambda_{hhh} = \frac{m_h^2}{2v^2}$$

- Higgs boson self coupling $\lambda = \sim 0.13$ in SM prediction
- $\kappa_{\lambda} = \kappa_3 = \frac{\lambda_{HHH}}{\lambda_{MHH}^{SM}}$ introduced to define the deviation of λ from the SM
- The measurement of κ_{λ} is important for both studying the Higgs boson and probing physics Beyond the SM (BSM)

• Higgs at 10: interaction with the fermions and vector bosons (μ , τ , b, W, Z, t)

• Di-Higgs production provides a **direct** access to λ

Also other couplings will get involved in the Di-Higgs measurement.

Where to measure κ_{λ} ?

Which context of the measurement?

K_{λ} impact on Single-Higgs

Production mode

Self-coupling makes impacts as NLO EW correction

Decay

JHEP 1612, 080 (2016) Eur. Phys. J. C (2017) 77: 887

Impacts on Production and Decay

- Combining available Full Run 2 di-Higgs and single-Higgs analyses
- Build the likelihood by combining the likelihood from each individual channel

Channel

 $HH \rightarrow bb\gamma\gamma$ $HH \rightarrow b\bar{b}\tau\bar{\tau}$ $HH \rightarrow b\bar{b}b\bar{b}$

$$\begin{array}{l} H \to \gamma \gamma \\ H \to ZZ^* \to 4\ell \\ H \to \tau^+ \tau^- \\ H \to WW^* \to e\nu\mu\nu \ (ggF,V) \\ H \to b\bar{b} \ (VH) \\ H \to b\bar{b} \ (VBF) \\ H \to b\bar{b} \ (t\bar{t}H) \end{array}$$

Fit input and statistical model

ATLAS-CONF-2022-050

Integrated luminosity (fb ⁻¹)				
	139			
	139			
	126			
	139			
	139			
VBF)	139			
	139			
	139			
	126			
	139			

Results from κ_{λ} likelihood scans

• Likelihood scan as the function of κ_{λ}

- Di-Higgs has much stronger constraining power than Single-Higgs
- to generic model as other couplings well constrained by single-Higgs

ATLAS-CONF-2022-050

• Once single-Higgs and di-Higgs combined, constraining power in κ_{λ} only model is similar

Results from κ_{λ} likelihood scans

• Likelihood scan as the function of κ_{λ}

Combination assumption

HH combination Single-*H* combination *HH*+*H* combination *HH*+*H* combination, κ_t floating *HH*+*H* combination, κ_t , κ_V , κ_b , κ_τ floating

- Di-Higgs has much stronger constraining power than Single-Higgs
- to generic model as other couplings well constrained by single-Higgs

ATLAS-CONF-2022-050

Obs. 95% CL	Exp. 95% CL	Obs. value
$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^+$
$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^+$
$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^+$
$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^+$
$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 2.3^+$

• Once single-Higgs and di-Higgs combined, constraining power in κ_{λ} only model is similar

Comparison with CMS results

Self coupling measurement results also published by CMS collaboration

- Compatible with observed κ_{λ} limit from CMS
 - as shown in the Single-Higgs projection and Di-Higgs projection

κ_{λ} - $\kappa_t 2D$ contours

To understand the correlation with other couplings

- Can explain why generic model measurement of κ_{λ} is similar to κ_{λ} only model

ATLAS-CONF-2022-050

• Single Higgs has much stronger containing power on κ_t , while di-Higgs stronger on κ_{λ}

Summary

- Higgs self-coupling is important to determine the Higgs potential structure
- Di-Higgs production has the direct access to the self-coupling
- Combination of Di-Higgs and Single-Higgs
 - thanks to single Higgs constraining power on other couplings, we can have the less model dependent measurement,
- The self-coupling is measure of the provide the self-coupling is measure of the self-coupling is measure of the self-coupling is the self-coupl dataset at ATLAS
 - At 68% C.L., the observed (expected) allowed interval of κ_{λ} : [-0.4, 6.3] ([-1.9, 7.5])
 - The results are compatible with the one from CMS
- Stay tuned for even better results from LHC Run3 and future experiment results!

Backup and bonus

- Why shape of the scalar potential is important?
 - and cosmology

- The stability of the potential at high has an impact of the possible role of the Higgs boson as the inflation in the primordial Universe

Scale potential

• The shape of the scalar potential is linked to many open questions of particle physics

• The modification of the shape of the scale potential at high scales make the EW vacuum metastable

Decay BR of the di-Higgs

	bb	WW	TT	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

Parameterization in Di-Higgs: ggF mode

- Parametrize (κ_{λ} , κ_{t}) impacts on ggF

$$\begin{split} \sigma_{\rm ggF}(pp \to HH) \sim \kappa_t^4 \left[\mathcal{R}_1^2 + 2\frac{\kappa_\lambda}{\kappa_t} \mathcal{R}(\mathcal{R}_1^*\mathcal{R}_2) + \left(\frac{\kappa_\lambda}{\kappa_t}\right)^2 |\mathcal{R}_2|^2 \right] \\ \sigma &= \kappa_t^4 a_1 + \kappa_\lambda \kappa_t^3 a_2 + \kappa_\lambda^4 a_3 \end{split}$$

• For ggF, resolve the 3 coefficients by varying the κ_{λ} while fixing κ_t =1

Parameterization in Di-Higgs: VBF mode

• Parametrize (κ_{λ} , κ_{V} , κ_{2V}) impacts on VBF

$\sigma(\kappa_{2V}, \kappa_{\lambda}, \kappa_{V}) = |A|^{2} = |\kappa_{V}\kappa_{\lambda}M_{s} + \kappa_{V}^{2}M_{t} + \kappa_{2V}M_{x}|^{2}$

• For VBF, resolve the 6 coefficients by varying the (κ_{λ} , κ_{2V}) while fixing κ_{V}

 $\sigma = \kappa_V^2 \kappa_\lambda^2 a_1 + \kappa_V^4 a_2 + \kappa_{2V}^2 a_3 + \kappa_V^3 \kappa_\lambda a_4 + \kappa_V \kappa_\lambda \kappa_{2V} a_5 + \kappa_V^2 \kappa_{2V} a_6$

Parameterization in Single-Higgs

$$\mu_{if}(\kappa_{\lambda}) =$$

Impacts on the production modes (i) and the decay channels (f) expressed as:

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_H^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)}{K_{\text{EW}}^i} \right]$$

- Z^{BSM}H: wave function renormalization, accounts for the **universal correction**
- C1: process and kinematic-dependent coefficients, it encodes the magnitude of the κ_{λ} -dependent linear correction
- K_{EW}: represents the full set of NLO EW corrections
- κ_f and κ_i consist of: κ_{λ} , κ_V (= $\kappa_W = \kappa_Z$), κ_t , κ_b ,

$$\mu_i(\kappa_\lambda) \times \mu_f(\kappa_\lambda)$$

$$\mu_f(\kappa_{\lambda}, \kappa_f) = \frac{\mathsf{BR}_f^{\mathsf{BSM}}}{\mathsf{BR}_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j \mathsf{BR}_j^{\mathsf{SM}} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}$$

$$Z_H^{\text{BSM}}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H}$$
, with $\delta Z_H = -1.536 \times 10^{-3}$.

JHEP 1612, 080 (2016) Eur. Phys. J. C (2017) 77: 887

,
$$\kappa_{\tau}$$
, κ_{c} (= κ_{t}), κ_{s} (= κ_{b}), κ_{μ} (= κ_{τ})

κ_{λ} parameterization in Single-Higgs

• Thanks to recent effort by LHCHWG, C_1 and K_{EW} derived in STXS 1.2 granularity

- Calculation at STXS 1.2 is available for ttH, V(lep)H, and Hjj (VBF and V(had)H) processes
 - Only inclusive level available for ggH and tHj due to the missing differential calculations
 - Not available for tHW, bbH and ggZH, thus no NLO EW implemented for consistency $_{\scriptscriptstyle 19}$

TXS BIN	K_{EW}
ΓH_FWDH	1.017
$\Gamma H_P T H_0_60$	1.041
$\Gamma H_PTH_60_120$	1.025
$\Gamma H_P T H_1 20_2 00$	1.002
$\Gamma H_P T H_2 00_3 00$	0.978
$\Gamma H_PTH_{300}_{450}$	0.956
ΓH_PTH_GT450	0.923

Single Higgs parametrization with STXS

bbH

ggF: only inclusive impact As the differential impact is not yet available

tHqb

tHW

Fit results in different kappa scenario

POIs	$\kappa_V {}^{+1\sigma}_{-1\sigma}$	$\kappa_t {}^{+1}\sigma_{-1}\sigma$	$\kappa_b {}^{+1\sigma}_{-1\sigma}$	$\kappa_{\tau}^{+1\sigma}_{-1\sigma}$	$\kappa_{\lambda-1\sigma}^{+1\sigma}$	<i>к</i> _λ [95% CL]	
Kλ	1	1 1	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
			L	$1.0^{+4.8}_{-1.7}$	[-1.9, 7.5]	Exp.	
κ_{λ} - κ_t fit	1	$1.00^{+0.05}_{-0.04}$	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
		$1.00^{+0.05}_{-0.04}$			$1.0^{+4.8}_{-1.7}$	[-1.9, 7.6]	Exp.
Generic fit	$1.00^{+0.05}_{-0.05}$	$0.93^{+0.07}_{-0.06}$	$0.90^{+0.12}_{-0.11}$	$0.93^{+0.08}_{-0.07}$	$2.3^{+2.1}_{-2.0}$	[-1.3, 6.1]	Obs.
	$1.00^{+0.05}_{-0.05}$	$1.00^{+0.07}_{-0.07}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.08}_{-0.08}$	$1.0^{+5.0}_{-1.8}$	[-2.1, 7.6]	Exp.

HL-LHC projection

$HH \rightarrow b\bar{b}\tau^{+}\tau^{-} + b\bar{b}\gamma\gamma$

	Significance $[\sigma]$			Combined signal
Uncertainty scenario	$b \overline{b} \gamma \gamma$	$b\bar{b}\tau^+\tau^-$	Combination	strength precision $[\%]$
No syst. unc.	2.3	4.0	4.6	-23/+23
Baseline	2.2	2.8	3.2	-31/+34
Theoretical unc. halved	1.1	1.7	2.0	-49/+51
Run 2 syst. unc.	1.1	1.5	1.7	-57/+68

ATL-PHYS-PUB-2022-005

Uncertainty scenario	Likelihood scan 1σ CI	Likelihood scan 2σ CI
No syst. unc.	[0.6, 1.5]	[0.3, 2.1]
Baseline	[0.5,1.6]	[0.0, 2.7]
Theoretical unc. halved	$\left[0.2, 2.2 ight]$	[-0.4, 5.6]
Run 2 syst. unc.	$\left[0.1, 2.5\right]$	[-0.7, 5.7]

