

Axion Quality from Superconformal Dynamics

Yuichiro Nakai

T. D. Lee Institute & Shanghai Jiao Tong U.

Based on YN and M. Suzuki (TDLI), PLB 2021.

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Strong CP Problem

QCD Lagrangian for strong interactions allows

$${\cal L}_{ heta} = heta rac{g_s^2}{32\pi^2} G^{a\mu
u} \widetilde{G}^a_{\mu
u}$$

explicitly violating **CP** symmetry.

The physical strong CP phase : $ar{ heta} \equiv heta - rg \det \left(M_u M_d
ight)$

The current upper bound on the neutron electric dipole moment

$$\Rightarrow |\bar{\theta}| < 10^{-11}$$

Why is $\bar{\theta}$ so small ??

Some shifts of $ar{ heta}$ would not provide a visible change in our world.

Axion Solution

The most common explanation is **the Peccei-Quinn mechanism** that <u>the strong CP phase is promoted to a dynamical variable</u>.

$$\mathcal{L}_{\theta} = \left(\theta + \frac{a}{f_a}\right) \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}$$

$$T \ll \Lambda_{\text{QCD}}$$

$$T \gg \Lambda_{\text{QCD}}$$

The axion a dynamically cancels the strong CP phase !

Fuminobu Takahashi slide

Axion Solution

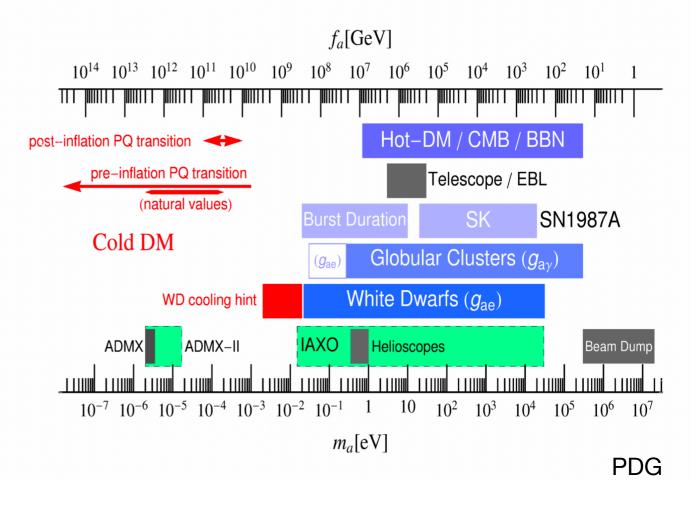
Axion is <u>a pseudo-Nambu-Goldstone boson</u> associated with spontaneous breaking of **a global U(1)**PQ symmetry.

Non-perturbative QCD effects break the U(1)PQ explicitly and generate the axion potential :

$$V(a) \sim m_{\pi}^2 f_{\pi}^2 \cos\left(heta + rac{a}{f_a}
ight)$$

Astrophysical observations put a lower limit :

$$f_a\gtrsim 10^8\,{
m GeV}$$



Axion Quality Problem

The small strong CP phase requires the U(1)PQ to be realized to an extraordinary high degree.

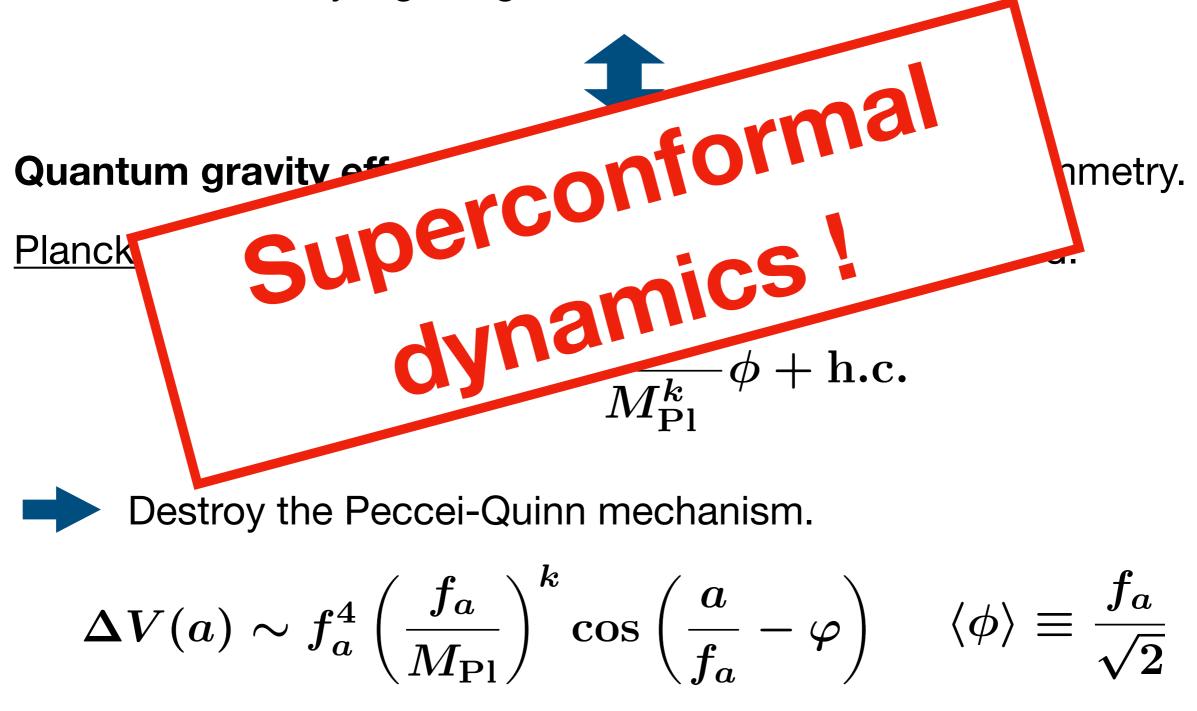
Quantum gravity effects do not respect such a global symmetry.

Planck suppressed U(1)PQ-violating operators are expected.

$$\Delta V(\phi) \sim rac{|\phi|^{k+3}}{M_{
m Pl}^k} \phi + {
m h.c.}$$

Axion Quality Problem

The small strong CP phase requires the U(1)PQ to be realized to an extraordinary high degree.



Conformal Dynamics

The PQ breaking field marginally couples to CFT sector fields.

$$W_{
m int} = \lambda \phi {\cal O}_{
m CFT}$$

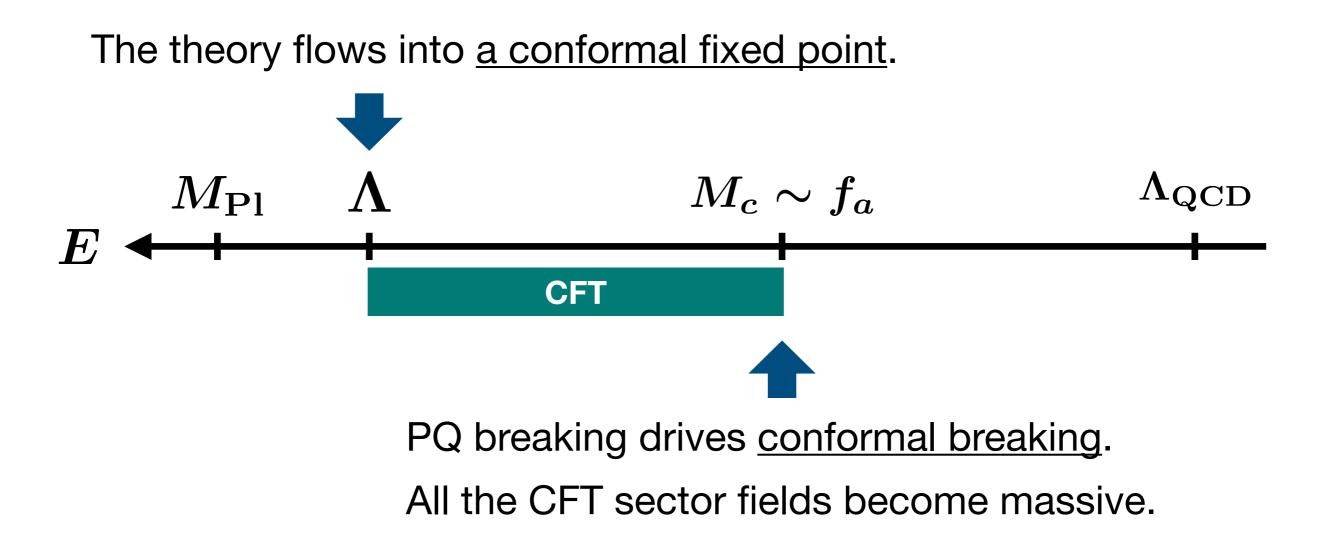
The PQ breaking field holds a large anomalous dimension.

$$\bullet \quad \epsilon_{\phi} \equiv Z_{\phi}^{-1/2}(\mu) = \left(\frac{\mu}{\Lambda}\right)^{\frac{\gamma_{\phi}}{2}} \ll 1$$

The U(1)PQ-violating operators are <u>significantly suppressed</u> at low-energies :

$$\Delta W \sim rac{\phi^k}{M_{
m Pl}^{k-3}}
ightarrow \epsilon_{\phi}^k rac{\phi^k}{M_{
m Pl}^{k-3}}$$

Conformal Dynamics



Integrating out the CFT sector fields generates

$${\cal L}_{ heta} = \left(heta + rac{a}{f_a}
ight) rac{g_s^2}{32\pi^2} G^{a\mu
u} \widetilde{G}^a_{\mu
u}$$

cf. The KSVZ axion model

The Model

A SUSY SU(N) gauge theory with N_f vector-like quarks :

$$Q_I, ar{Q}_I \; (I=1,\cdots,N_f) \;\;\; N_f$$
 : even

The theory is in **conformal window** :

$$rac{3}{2}N < N_f < 3N$$

PQ singlet chiral superfields : $\Phi, ar{\Phi}$

$$egin{aligned} W_Q &= \lambda \Phi Q_m ar{Q}_m + ar{\lambda} ar{\Phi} Q_k ar{Q}_k \ m &= 1, \cdots, N_f/2 \qquad k = N_f/2 + 1, \cdots, N_f \end{aligned}$$

The ordinary color is embedded in flavor symmetries :

$$egin{aligned} SU(N_f/2)_1 imes SU(N_f/2)_2 \ &\supset SU(3)_C \end{aligned}$$

The Model

	Q_m	$ar{Q}_m$	Q_k	$ar{Q}_{k}$	Φ	$ar{\Phi}$
SU(N)	N	$\overline{\mathbf{N}}$	\mathbf{N}	$\overline{\mathbf{N}}$	1	1
$U(1)_{\mathrm{PQ}}~(\mathrm{Z}_N)$	+1	0	-1	0	-1	+1
$U(1)_R$	$\left \begin{array}{c} rac{N_f - N}{N_f} \end{array} ight $	$rac{N_f\!-\!N}{N_f}$	$rac{N_f\!-\!N}{N_f}$	$rac{N_f\!-\!N}{N_f}$	$rac{2N}{N_f}$	$rac{2N}{N_f}$

The U(1)PQ symmetry is not anomalous under the SU(N).

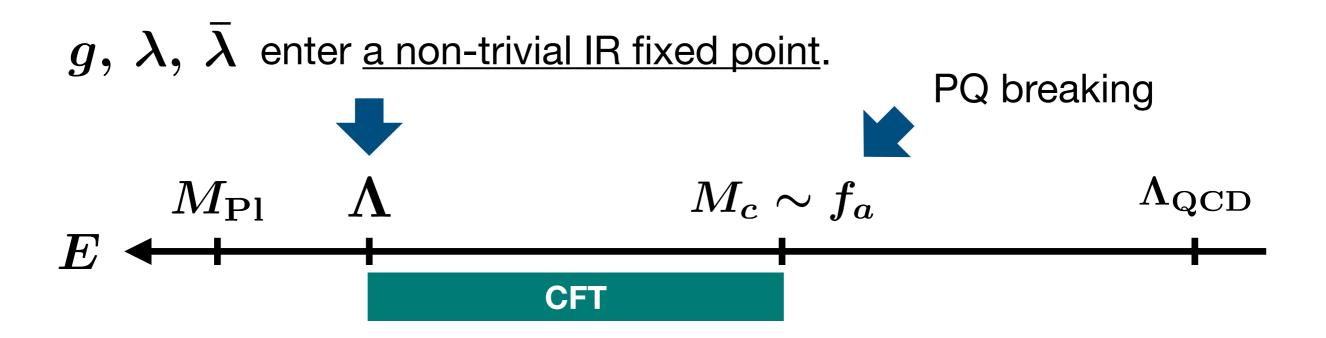
Axion does not couple to the SU(N) gauge field so that no new axion potential is generated.

• Anomaly coefficient : $A_{U(1)_{PQ}-SU(3)_C-SU(3)_C} = N$

 \blacksquare $\mathbf{Z}_N \subset U(1)_{\mathbf{PQ}}$ is an anomaly-free discrete symmetry.

It ensures the U(1)PQ at the renormalizable level.

Anomalous Dimension

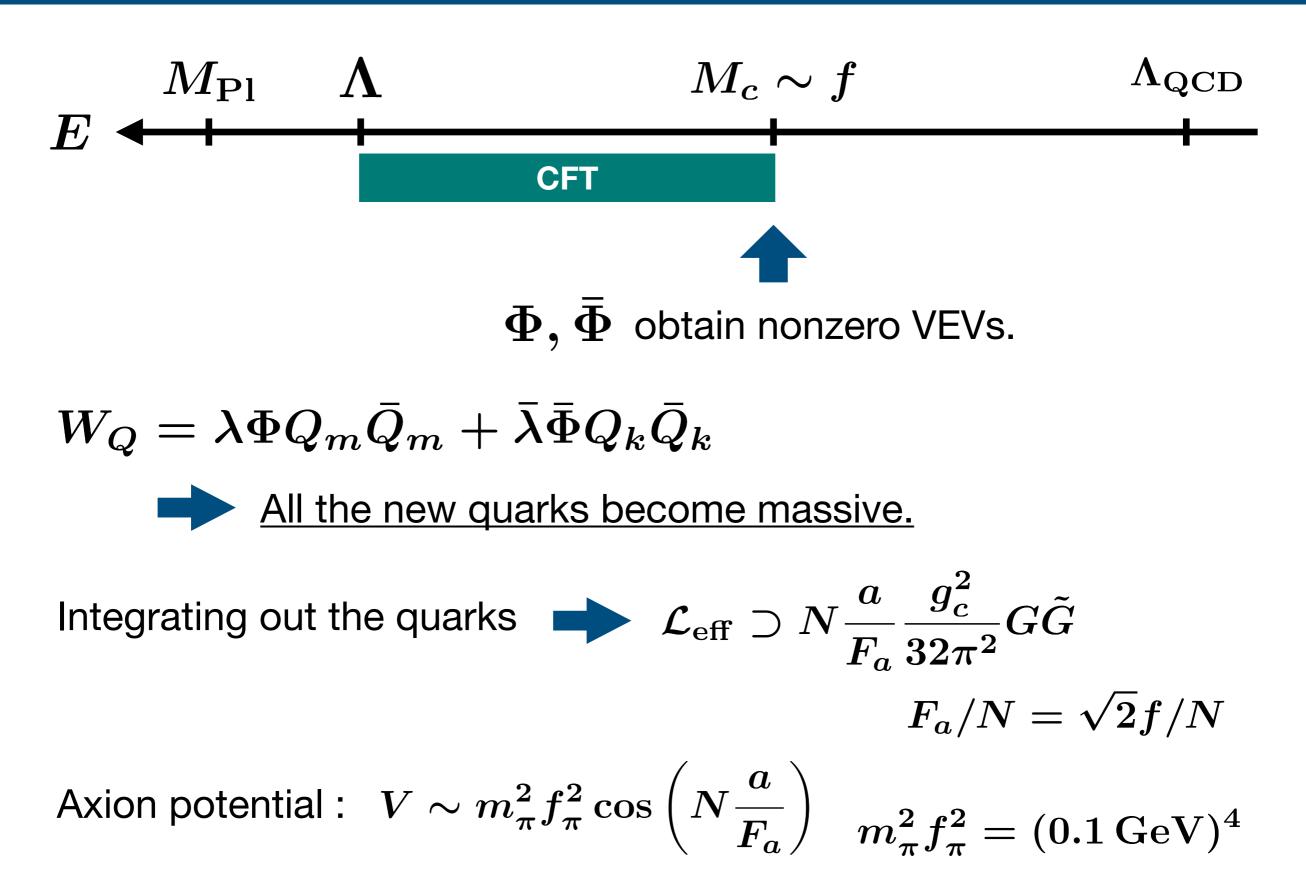


Anomalous dimension is determined by the U(1)_R charge.

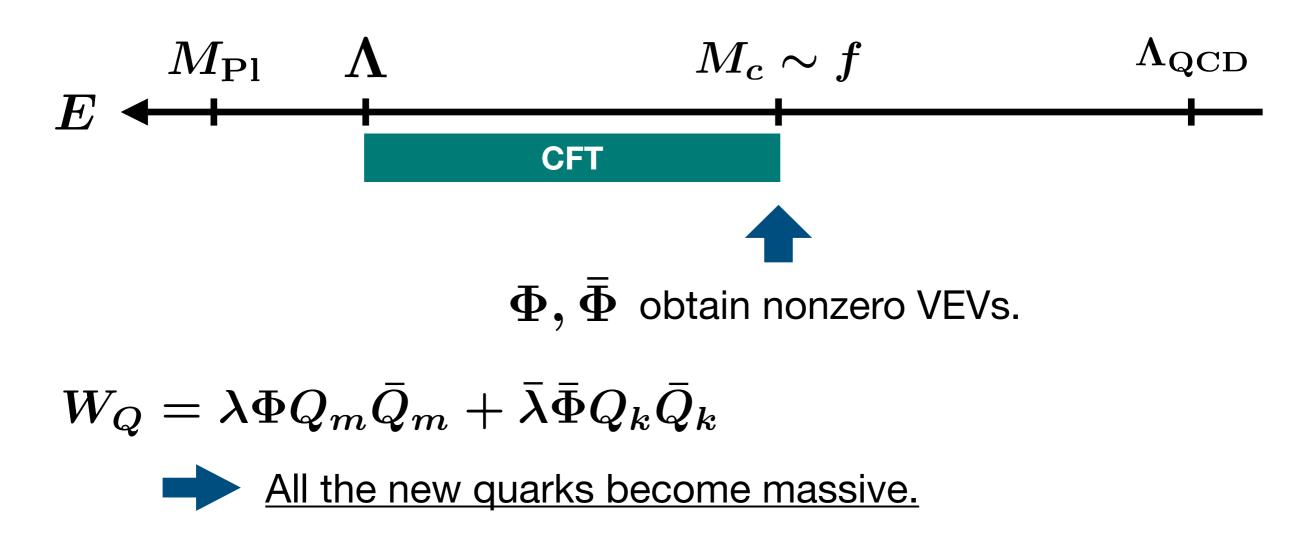
$$Z_{\Phi} = \left(rac{M_c}{\Lambda}
ight)^{-\gamma_{\Phi}} \hspace{0.5cm} \gamma_{\Phi} = 6rac{N}{N_f} - 2$$

Canonical normalization :
$$\Phi = \left(rac{M_c}{\Lambda}
ight)^{\gamma_{\Phi}/2} \hat{\Phi}$$

Axion Potential



Hidden Glueballs



The model becomes a SU(N) pure Yang-Mills theory.

It confines just below the conformal breaking scale.

Heavy **SU(N) glueballs** and their superpartners.

Emergent PQ

The most dangerous operator respecting the Z_N symmetry :

$$W_{
m PQ} \sim rac{\Phi^N}{M_{
m Pl}^{N-3}} \sim \left(rac{M_c}{\Lambda}
ight)^{rac{N\gamma_\Phi}{2}} rac{\hat{\Phi}^N}{M_{
m Pl}^{N-3}}$$

The scalar potential in supergravity $~V \supset -3WW^*/M_{
m Pl}^2$ $W=m_{3/2}M_{
m Pl}^2$

The U(1)PQ-violating axion potential :

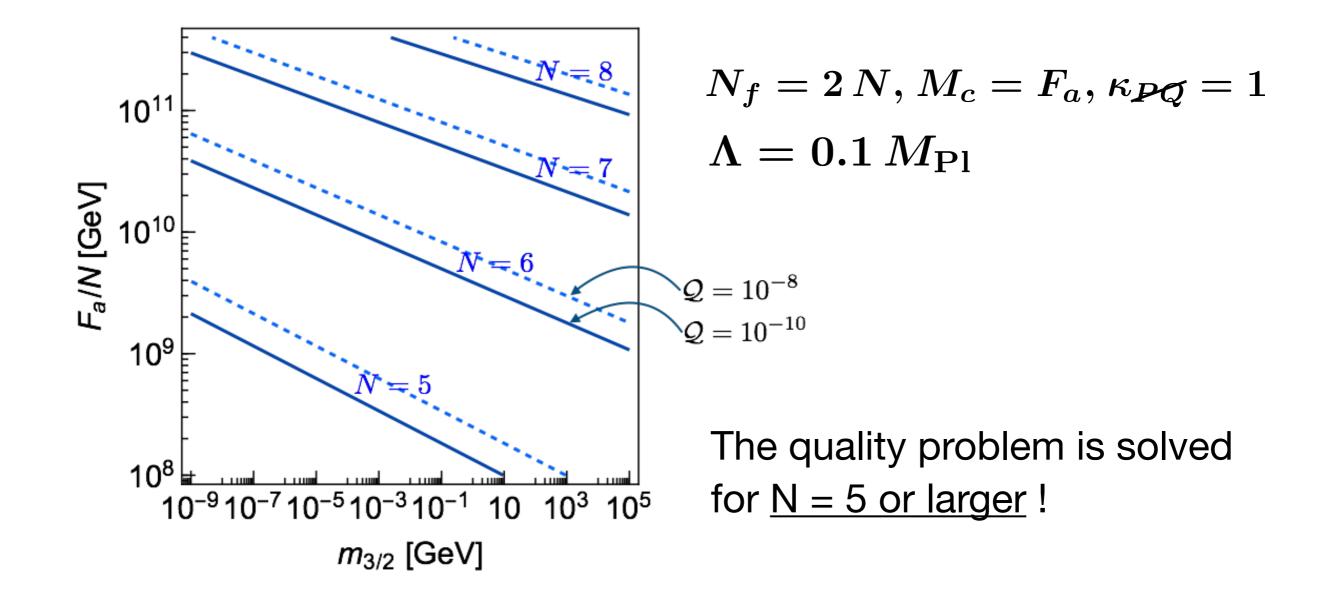
Arbitrary !

$$V_{
m PQ} \supset \left(rac{M_c}{\Lambda}
ight)^{N(3N/N_f-1)} rac{\kappa_{
m PQ} m_{3/2} F_a^N}{M_{
m Pl}^{N-3}} \cos\left(Nrac{a}{F_a}+arphi
ight)$$

Emergent PQ

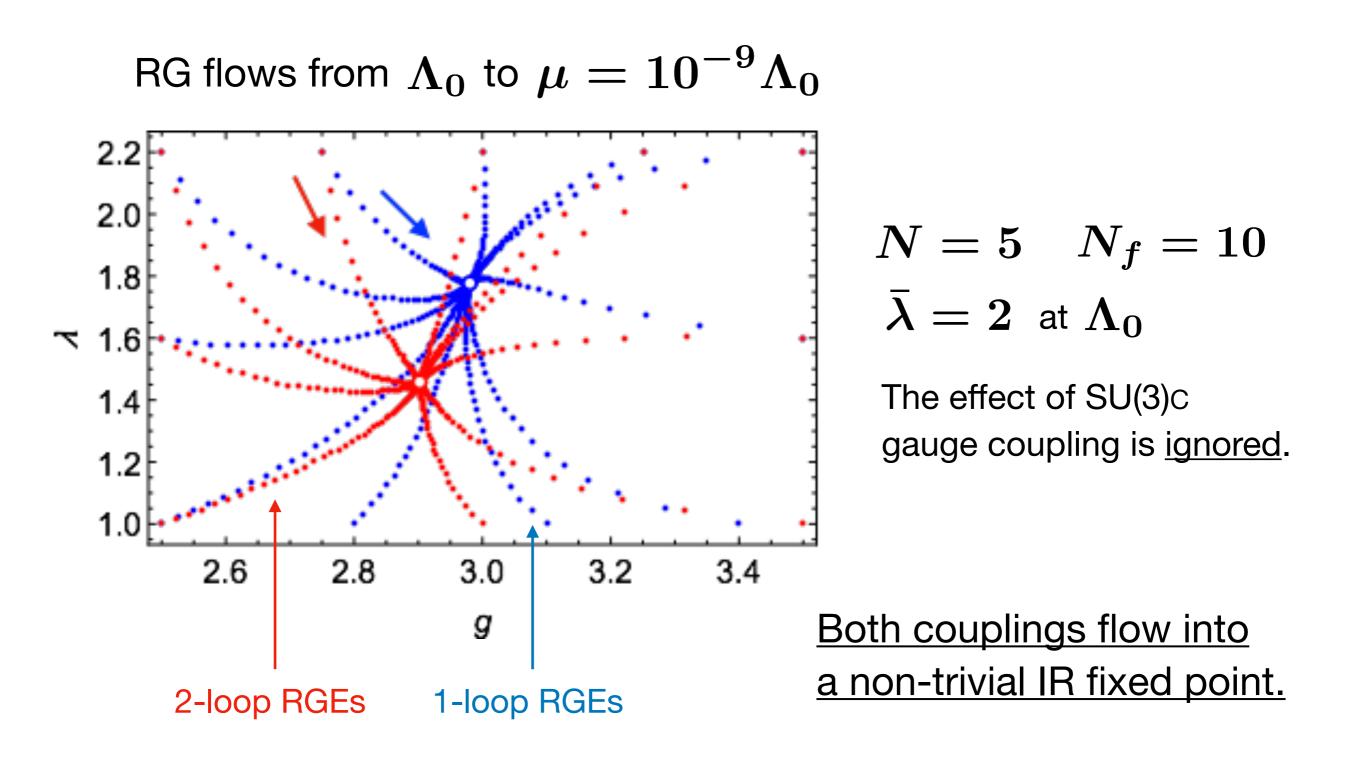
Axion quality factor :
$$V_{ extsf{PQ}}\equiv \mathcal{Q}\,m_{\pi}^2 f_{\pi}^2\cos\left(Nrac{a}{F_a}+arphi
ight)$$

Experimental upper bound requires $\,\mathcal{Q} \lesssim 10^{-10}$



The IR fixed Point

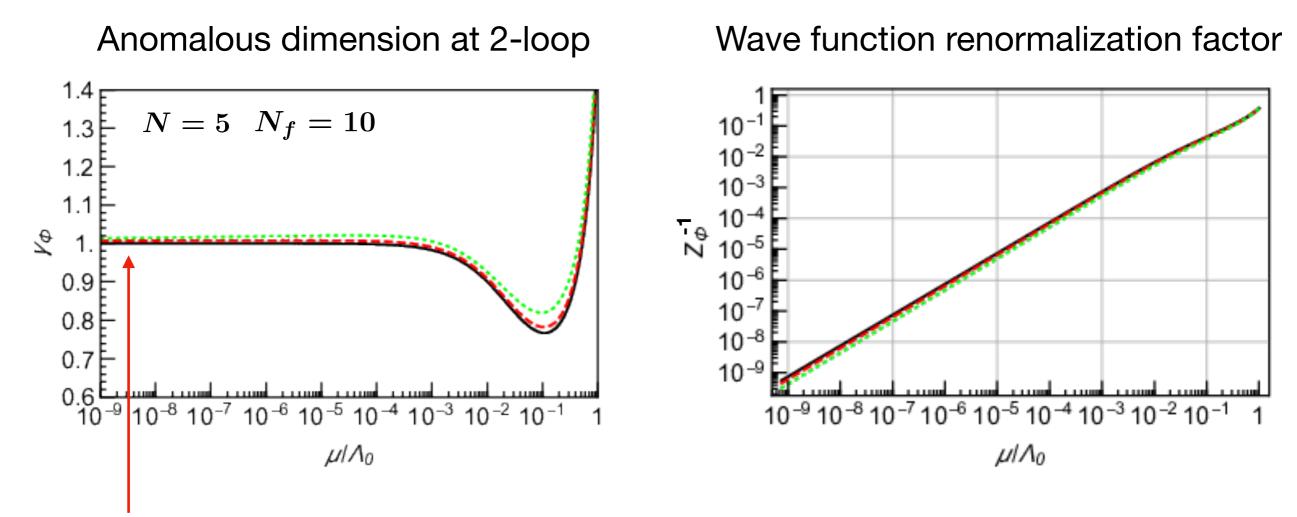
Check the existence of the IR fixed point for $\,g,\,\lambda,\,ar\lambda\,$



The IR fixed Point

Include the effect of the SU(3)c gauge coupling.

 $g=\lambda=ar\lambda=ar\lambda=2$ $g_c=0,1,2$ at Λ_0



The value without the QCD effect

<u>The smallness enables to solve</u> the axion quality problem.

Summary

- **Superconformal dynamics** can address the axion quality problem.
- PQ breaking fields <u>marginally couple to new quarks</u> charged under the SU(3)c and <u>a new SU(N)</u>.
- <u>A large anomalous dimension</u> of PQ breaking fields leads to a strong suppression of explicit U(1)PQ-violating operators.
- <u>PQ breaking drives conformal breaking</u> and integrating out the new heavy quarks generates <u>the desired axion coupling to gluons</u>.

Thank you.

Backup Material

PQ Breaking

PQ breaking :
$$W_X' = \kappa' X (2 \Phi ar \Phi - f'^2)$$

Canonical normalization :
$$\Phi = \left(rac{M_c}{\Lambda}
ight)^{\gamma_{\Phi}/2} \hat{\Phi}$$

$$\blacktriangleright W_X = \kappa \left(\frac{M_c}{\Lambda}\right)^{\gamma_{\Phi}} X(2\hat{\Phi}\hat{\bar{\Phi}} - f^2)$$
$$\kappa \sim \kappa' \qquad f \sim \left(\frac{M_c}{\Lambda}\right)^{-\gamma_{\Phi}/2} f'$$

PQ (and conformal) breaking scale $M_c \sim f$