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Outline:

+ Background and Motivations

« Free energy to A° of SYM?, , theory

+ Large-N. generalized Padé approximant
+ Comparison for scaled entropy density
¢ Summary

aThe notation SYM, , indicates NV'= x supersymmetric Yang-Mills theory in y spacetime dimensions.



Background and Motivations

The V' = 4 supersymmetric Yang-Mills theory (SYM,)

A super Yang-Mills theory with the maximum number N = 4
Definition| of supersymmetries, where N = 4 refers to the number of
supersymmetric charges.

Prominent| The theory is finite. Proof: The one-loop B function equals to O.
feature This means that the coupling does not run.

The most famous example of a conformal field theory (CFT)

— In 4 dimension.
Application

Be often taken as a model for hot QCD in the large N. and

strong 't Hooft coupling A limits, A=g2 N.., N, is number of colors, g is
the gauge coupling constant.



Background and Motivations

v" Relation between SYM, theory and QCD

SYM,

SYMP,

Conformal
symm.

&& SUSY

QCD

QGP

Finite T

7=0

ECC

Confining

phase

=0

QGP and SYMP, are surprisingly
similar to each other in the weak
coupling regime (high
temperature T).

Key difference

(energy densities, Debye masses,
shear viscosity, energy loss)

The number and types of

degrees of freedom.
(Four Majorana fermions and
Six scalars)



Background and Motivations

The perturbative expansion of the free energy of the SYM, , at high T is

F(A—0) ~ T* [agA® + aAt + a32%/% + (ay + ajlog)A? + 0(25/2)], (1)

Free energy of the

4 70
WA = ideal SYM, , plasma

l

l

~0(/‘[n>1) N

=— non-analytic, e.g. 0(13/?)

The 2-loop Feynman
diagrams

c”.==> non-analytic, e.g. 0(1%logA)

A. D.J. Gross, R.D. Pisarski and L.G.
Yaffe, Rev. Mod. Phys.53 (1981) 43.

Reorganizing the perturbation theory2 to account for the
thermal mass of the gauge bosons and scalar fields

A. P.B. Arnold and C.-X. Zhai, hep-ph/9408276; hep-ph/9410360. ﬂ

Like QCDs3, there are uncanceled infrared divergences at the three-loop level

Full 0(12)| — |Require 3-loop| Generate 0(15/2)
calculation 1

Consider the dressed propagators




Background and Motivations

In the weak-couping limit the SYM,, free energy has been calculated
3/2
through Order /1 / g|V|ng A. Fotopoulos and T. R. Taylor. Phys. Rev. D 59:061701,1999.

B. C.-. Kimand S.-J. Rey. Nucl. Phys. B 564:430-440, 2000.
C. M. A. Vazquez-Mozo. Phys. Rev. D 60:106010, 1999.

F S 3 3++/2 3
= =1- A+ AZ +0(2?), (2)
:Fideal Sideal 27T2 n.3

The strong coupling behavior of the free energy has been computed using
the anti-de Sitter space/CFT (AdS/CFT) correspondences® A s.s. cubser, 1. R. iebanov. Nucl.

Phys. B 534:202-222, 1998.

T
Tideal cS‘1deal

[1 + B3+ 000 2)] 3)

Fideal = —dam?T*/6 ,Siqea1 = 2d,m%T3/3 : the ideal or Stefan-Boltzmann limit
of the free energy and entropy density.
d, = N? — 1:the dimension of the adjoint representation .



Background and Motivations

v" Comparison of the scaled entropy density ( §/8;qea1 ? Detween the weak

and strong coupling results in SYM, and R 4, Padé approximation

Padeé approximant is constructed by interpolating between the weak- and strong-coupling limits.

Stefan-Boltzmann limit

Strong-coupling limit

Weak coupling - O(A)

Weak coupling - O(A*?)

Strong coupling — O(A~%2)
Padé [4,4] 6

A. J.P. Blaizot, E. lancu, U. Kraemmer.
JHEP, 06:035, 2007.

1.00f i TR
: X ‘::':"‘-‘-:-- ,’;‘ I:
T T
\\\ "s‘. I:
[ AN 1
0.95: N ]
‘\‘ "\ {‘ how to systematically
\‘ : ! extend these two results
_0.90F Vo i into the intermediate
s r Y \  coupling region ?
o L 1 . 1
= 1 A} 1
% I 1‘| .“\ "t
0.85¢ ‘nl 5, ‘..
L LY
\ s A
'i “\'\\\
\ L
8 “ “ ‘\,
U'.BO: ! b N ]
\ A ]
\ W ;
L 3 .“:k"-a..,_ )
L 1 e e s e e e .|
0'75” e aaal el ‘\ Ll NPT . L
0.01 0.10 1 10 100 1000
A

Motivation of our work

B. C.-j. Kim and S.-J. Rey. Nucl. Phys.
B 564:430-440, 2000.

== Systematically extend the weak coupling

result into the intermediate coupling region.

The aim of this work was to get the 4" term ~(a4 + ajlog1)A?




Background and Motivations

» Under the scheme called
regularization by dimensional reduction (RDR)’

A. W.Siegel, Phys. Lett. B 84(1979) 193.

B. D.Capper, D.Jones and P.Van Nieuwenhuizen, Nuclear Physics B
167(1980) 479.

C. P.Howe, A.Parkes and P.West, Physics Letters B 147 (1984) 409.

A modified version of the dimensional regularization based
RDR| = |on dimensional reduction which manifestly preserves

ﬂ gauge invariance, unitarity, and supersymmetry

Applied to pure Yang-Mills theory; supersymmetric QED and V' =1, 2,
and 4 SYM theory® a. Lv.Avdeevand AA. Viadimirov, Nucl. Phys. B 219 (1983) 262.

Dimensional — | SYM,, can be obtained from SYM, ,,
reduction(DR)e without thermal mass contributions.

A. L. Brink, J. H. Schwarz, and J. Scherk. Nucl. Phys. B 121:77-92, 1977.




Background and Motivations

O Lagrangian density for SYM, ;o and SYM, ,

L for SYM, 44:
1 e
Lsym, ,, = Tr[=3 Gy + 2i9T"Dyp], M,N = 0,9, (4)

the field strength tensor: Gyy = 0yAy — OyAy — ig[Ay, Ayl the covariant
derivative in the adjoint representation of SU(N,): Dy = 9y — ig[Apm,-].

L for SYM, , can be obtained by DR from SYM, ,:

1 T 1 .
Lovmy, = TH=3Gh + (D@2 + Wb, i — 5 97 (1[4, D5])? -
igt/Jl.[aZ. Xp + iﬁiqj stq,lpj]], w,v=20,--,3, (5)
Y; (i=1,---,4). four Majorana fermions, ® = (X;,Y;,X,,Y,, X3,Y3): sSiX
independent real scalar fields. ’

Add the gauge-fixing and ghost terms to quantize SYM, ;q and SYM, ,.
All fields belong to the adjoint representation of the SU(N,.) gauge group.



Background and Motivations

Feynman diagrams calculations require
{l In RDR scheme

A
f \

Keep all fields to be integer- Keep all momenta to be such
dimensional tensors or spinors in as 4-2¢ dimensional vectors,
the case of extended supersymmetry where € is infinitesimal

4 U
Preserve supersymmetry Ensure ultraviolet finiteness

Variations
of RDR

U

Be Discarded!

{ Results from them must be the same as RDR

Disadvantage: computations are more complex




Free energy to 1 of SYM, , theory

» The resummed Lagrangian density

Following Arnold and Zhai, the resummed Lagrangian density can be written as

LsyM,, = {Lsym,, HTr|[mpA58,, — Mp®;5,,]}

— Tr[m,z)A(z)(SpO — MgCDﬁSpO]

(6)

Contribute to the gluon Contribute to the gluon
and scalar counterterms and scalar propagators

where

1) mp and My only contribute to the zero Matsubara modes of the two fields,
and

m3 = A(d — 2)[(D + 4)b; — 8f;] = 2AT? 4+ 0(e),
MZ = A[(D + 4)b; — 8f] = AT? + 0O(e). (7)

2) 6, Is shorthand for the Kronecker delta function 6, o.



Free energy to A of SYM, 4 theory

The calculation of the thermodynamics up to 0 (1?)

A

[

Feynman diagrams
up to 2-loop order

|

Feynman diagrams
at the 3-loop order

ﬂ [ A |
Compute directly in SYM, ,/ | 3-loop gluonic and Massless 3-loop
under the RDR scheme , scalar counterterm diagrams
since we must dress the with bare propagators I
gluon and sca_lar 1 Compute in
propagators differently Compute directly SYM, ;0 under

ﬂ in SYM, 4 the RDR scheme
I I

g = 4, Trl, = 4, the dimension
for the gluon field D = 4 and for
allmomentumd = 4 — 2¢

g =10, Trl;, = 8, the dimension
for the gluon field D = 10 and for
all momentumd = 4 — 2¢
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Free energy to A of SYM, 4 theory

v' Feynman diagrams up to the three-loop level
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The 3-loop diagrams with bare The 3-loop gluonic and scalar counterterm
propagators for SYM, ;4 diagrams with bare propagators for SYM, 4

Dashed lines indicate a scalar field and dotted lines indicate a ghost field. The crosses are the thermal counterterms.
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Free energy to 1 of SYM, , theory

» The resummed two-loop free energy

resum __ 3+v2 2
1-loop — Fideal [1 + 3 Az] .

(8)
» The resummed one-loop free energy

(_3 + 3v/2 + 151:82 . log)l) AZ] . (9)

resum __
2-loop — Fideal [ /1  on4 \3g 4

24

> The resummed three-loop free energy

F: éci?:}g;: JT.'.j—luup + Fﬂoop ‘?::? (ff'jmp ) (10)
where
F3_]00p = d;l/\g (Foa + Fop + Foc+ Foqg + Foe + For + Fag
+ Fon + Fai + Fojl 5ot Loe | (11)
which will generated infrared divergences which will be canceled by Tgitloop
b
and F3 o0p -
resuI )\ QT Cr( 1) - .
3 doop = ]—"ide.dIQ |5 + 37 + SC(—l) +0log2 —6Glogm|.  (12)
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Free energy to A of SYM, 4 theory

» SYM,, thermodynamic functions to 0(2?)

The final result for the resummed free energy up to order A2for
SYM, , in the RDR scheme is

3\ A\ Y2 21 9v2 3
F = Fideal 1__—_|’(3‘|‘\/§) —a + _—_7\/_+—’TE
2 72 8 s 2

2
3¢(-1) 25 3. AT/ AN
Y S R _2} (_2) } (12)

1) It holds for all N, and is independent of the momentum scale u
2) Infrared divergences are canceled by considering m3 and M3
3) No coupling constant renormalization counterterm is required,
since A does not run in SYM, ,
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Large-/V, generalized Padé approximant

Based on the large-N, structure of the strong-coupling expansion, we find
the following form can reconstruct all known coefficients in both the weak-

and strong-coupling limits

S 14 arl’2 + bA + cA3/2 + dA? + en5/?

|

To ensure that in the strong-coupling limit

1) one obtains the correct asymptotic limit of 3/4

2) terms of the form 2=1/2, 17%/2]og 1, 21, and 2~log A do not appear in the
strong-coupling expansion

14



Large-/V, generalized Padé approximant

Make sure it reproduces the weak-coupling

To fix the result through 0 (A2, 1%log 1)
remaining | _
coefficients Make sure it reproduces the strong-coupling
- |result through 0(173/2)
_am? 2(3+\/_) 3 2
a= 135¢(3) 37T b=b+ 2m2 ' ¢ T 15¢(3)
q= 180(3+2){(3)+87> _ 2b 3
o 2025m¢2(3) '~ 15¢(3) 5m2¢(3)’ (15)
1 y) 16m|45(3 +v2)¢(3 3
b= L1og(L) 4 m[45(3 +v2)¢(3) + n?]
T2 T2 18225¢%(3)
36( %(( 1))> + 69v2 + 59 — 751og(2)
_|_
3612
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Comparison for scaled entropy density

v' Comparison of §/8;4ea1 D€tWeen the update Padé approximation and the
perturbative results up to 0(1%)

1.00F = 7 I i
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0.80F o P .
T — - O(A?)strong coupling %
i Generalized Padé "g
0.75_..| I Ll R | =. il M| .
1 10 100 1000

107° 1072 0.1
A

At 0(A?), P/Pigeat <1 =— SYM,,: 1510; QCD: 1s35atg=1
The perturbative expansion of the SYM, , free energy might have
better convergence than QCD




Summary

> Finish the calculation resummed free energy to order 42 for SYM, ,
under the RDR scheme.

» Construct a new large-N,. Padé approximant based on our result.

» Compare our final result for the scaled entropy density to the
updated Padé approximants.

» Currently we compute the coefficient of A2 in the SYM, , free
energy.
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