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aThe notation SYMx,y indicates 𝓝= x supersymmetric Yang-Mills theory in y spacetime dimensions.



Background and Motivations

A super Yang-Mills theory with the maximum number 𝒩 = 4
of supersymmetries, where 𝓝 = 𝟒 refers to the number of 

supersymmetric charges. 

The theory is finite.   Proof: The one-loop 𝛽 function equals to 0. 

This means that the coupling does not run.

Definition

Prominent 

feature 

Application

The most famous example of a conformal field theory (CFT) 

in 4 dimension.

Be often taken as a model for hot QCD in the large 𝑁𝑐 and 

strong 't Hooft coupling 𝜆 limits, 𝜆=𝑔2 𝑁𝑐, 𝑁𝑐 is number of colors, 𝑔 is 

the gauge coupling constant. 
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The𝓝 = 𝟒 supersymmetric Yang-Mills theory (SYM4) 



Background and Motivations

✓ Relation between SYM4 theory and QCD

QGP and SYMP4 are surprisingly 

similar to each other in the weak 

coupling regime (high 

temperature T).

The number and types of 

degrees of freedom.

(Four Majorana fermions and

six scalars)

Key difference 
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(energy densities, Debye masses, 
shear viscosity, energy loss)



The 2-loop Feynman 

diagrams

Like QCD3, there are uncanceled infrared divergences at the three-loop level

~𝑎0𝜆
0 Free energy of the 

ideal SYM4,4  plasma

~𝑎2𝜆
1

~𝒪(𝜆𝑛>1)
Reorganizing the perturbation theory2 to account for the 

thermal mass of the gauge bosons and scalar fields

𝒪(𝜆3/2)non-analytic, e.g.

non-analytic, e.g. 𝒪(𝜆2log𝜆)

𝒪 𝜆2 𝒪 𝜆5/2Full 
Require 3-loop 

calculation
Generate

Consider the dressed propagators

A. D.J. Gross, R.D. Pisarski and L.G. 

Yaffe, Rev. Mod. Phys.53 (1981) 43.

A. P.B. Arnold and C.-X. Zhai, hep-ph/9408276; hep-ph/9410360.

Background and Motivations

The perturbative expansion of the free energy of the SYM4,4 at high T is

𝐹 𝜆 → 0 ∼ 𝑇4 𝑎0𝜆
0 + 𝑎2𝜆

1 + 𝑎3𝜆
3/2 + 𝑎4 + 𝑎4

′ log𝜆 𝜆2 + 𝒪 𝜆5/2 , (1)
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In the weak-couping limit the SYM4,4 free energy has been calculated

through order 𝜆 Τ3 2 giving4

The strong coupling behavior of the free energy has been computed using

the anti-de Sitter space/CFT (AdS/CFT) correspondence5

ℱideal = −𝑑𝐴𝜋
2𝑇4/6 ,𝒮ideal = 2𝑑𝐴𝜋

2𝑇3/3 : the ideal or Stefan-Boltzmann limit

of the free energy and entropy density.

𝒅𝑨 = 𝑁𝑐
2 − 1 : the dimension of the adjoint representation .

Background and Motivations

ℱ

ℱideal
=

𝒮

𝒮ideal
= 1 −

3

2𝜋2
𝜆 +

𝟑 + 𝟐

𝝅𝟑 𝝀
𝟑
𝟐 + 𝒪 𝜆2 ,

A. Fotopoulos and T. R. Taylor. Phys. Rev. D 59:061701,1999. 

B. C.-j. Kim and S.-J. Rey. Nucl. Phys. B 564:430–440, 2000. 

C. M. A. Vazquez-Mozo. Phys. Rev. D 60:106010, 1999.

A. S. S. Gubser, I. R. Klebanov. Nucl. 

Phys. B 534:202–222, 1998.

ℱ

ℱideal
=

𝒮

𝒮ideal
=

3

4
1 +

𝟏𝟓

𝟖
𝜻 𝟑 𝝀−

𝟑

𝟐 + 𝒪 𝜆−2 , 

(2)

(3)
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Background and Motivations

how to systematically
extend these two results 
into the intermediate 
coupling region ?

A. J. P. Blaizot, E. Iancu, U. Kraemmer. 

JHEP, 06:035, 2007.

B. C.-j. Kim and S.-J. Rey. Nucl. Phys. 

B 564:430–440, 2000.

Motivation of our work Systematically extend the weak coupling 
result into the intermediate coupling region.
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5

𝑃𝑎𝑑 ư𝑒 approximant is constructed by interpolating between the weak- and strong-coupling limits.

✓ Comparison of the scaled entropy density（ Τ𝓢 𝓢𝐢𝐝𝐞𝐚𝐥 ）between the weak 
and strong coupling results in SYM4 and 𝑅[4,4] 𝑃𝑎𝑑 ư𝑒 approximation

The aim of this work was to get the 4th term ~ 𝒂𝟒 + 𝒂𝟒
′ log𝝀 𝝀𝟐



Background and Motivations

A. W.Siegel, Phys. Lett. B 84(1979) 193.

B. D.Capper, D.Jones and P.Van Nieuwenhuizen, Nuclear Physics B 

167(1980) 479.

C. P.Howe, A.Parkes and P.West, Physics Letters B 147 (1984) 409.

A modified version of the dimensional regularization based

on dimensional reduction which manifestly preserves

gauge invariance, unitarity, and supersymmetry

RDR

Applied to pure Yang-Mills theory; supersymmetric QED and 𝓝 = 𝟏, 2, 

and 4 SYM theory8 A. L.V. Avdeev and A.A. Vladimirov, Nucl. Phys. B 219 (1983) 262.

Dimensional 

reduction(DR)9

SYM4,4 can be obtained from SYM1,10

without thermal mass contributions.

A. L. Brink, J. H. Schwarz, and J. Scherk. Nucl. Phys. B 121:77–92, 1977.
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➢ Under the scheme called 
regularization by dimensional reduction (RDR)7



 Lagrangian density for SYM1,10 and SYM4,4

Background and Motivations

𝓛 for SYM1,10 :

the field strength tensor: 𝐺𝑀𝑁 = 𝜕𝑀𝐴𝑁 − 𝜕𝑁𝐴𝑀 − 𝑖𝑔 𝐴𝑀, 𝐴𝑁 , the covariant

derivative in the adjoint representation of 𝑆𝑈(𝑁𝑐): 𝐷𝑀 = 𝜕𝑀 − 𝑖𝑔[𝐴𝑀,⋅].

𝓛 for SYM4,4 can be obtained by DR from SYM1,10 :

𝜓𝑖 ( 𝑖 = 1,⋯ , 4 ): four Majorana fermions, Φ ≡ (𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑋3, 𝑌3) : six

independent real scalar fields.

All fields belong to the adjoint representation of the SU(𝑵𝒄) gauge group.

,

ℒSYM1,10
= Tr[−

1

2
𝐺𝑀𝑁
2 + 2𝑖𝜓Γ𝑀𝐷𝑀𝜓], 𝑀,𝑁 = 0,⋯ , 9,

Tr[−
1

2
𝐺𝜇𝜈
2 + (𝐷𝜇Φ𝐴)

2 + 𝑖𝜓𝑖⧸𝐷𝜓𝑖 −
1

2
𝑔2(𝑖[Φ𝐴, Φ𝐵])

2 −

𝑖𝑔𝜓𝑖[𝛼𝑖𝑗
𝑝
𝑋𝑃 + 𝑖𝛽𝑖𝑗

𝑞
𝛾5𝑌𝑞, 𝜓𝑗]], 𝜇, 𝜈 = 0,⋯ , 3,

ℒSYM4,4
=

Add the gauge-fixing and ghost terms to quantize SYM1,10 and SYM4,4.

(4)

(5)
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Background and Motivations

Feynman diagrams calculations require

In RDR scheme  

Keep all momenta to be such 

as 4−2ϵ dimensional vectors, 

where ϵ is infinitesimal

Keep all fields to be integer-

dimensional tensors or spinors in 

the case of extended supersymmetry

Preserve supersymmetry Ensure ultraviolet finiteness

Variations 

of RDR 

Results from them must be the same as RDR

Disadvantage: computations are more complex 

Be Discarded!
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Following Arnold and Zhai, the resummed Lagrangian density can be written as 

where 

1)  𝑚𝐷 and 𝑀𝐷 only contribute to the zero Matsubara modes of the two fields,

and 

2) 𝛿𝑝0 is shorthand for the Kronecker delta function 𝛿𝑝0,0.

Contribute to the gluon 

and scalar propagators

Contribute to the gluon 

and scalar counterterms

Free energy to 𝜆2 of SYM4,4 theory

(6)

𝑚𝐷
2 = 𝜆 𝑑 − 2 𝐷 + 4 𝑏1 − 8𝑓1 = 2𝜆𝑇2 + 𝒪(𝜖),

𝑀𝐷
2 = 𝜆 𝐷 + 4 𝑏1 − 8𝑓1 = 𝜆𝑇2 + 𝒪(𝜖).

ℒSYM4,4

resum = ℒSYM4,4
+ Tr 𝑚𝐷

2𝐴0
2𝛿𝑝0 −𝑀𝐷

2Φ𝐴
2𝛿𝑝0

− Tr[𝑚𝐷
2𝐴0

2𝛿𝑝0 −𝑀𝐷
2Φ𝐴

2𝛿𝑝0]

(7)
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➢ The resummed Lagrangian density



Compute in 

SYM1,10 under 

the RDR scheme 

The calculation of the thermodynamics up to 𝒪(𝜆2)

Feynman diagrams 

up to 2-loop order

Massless 3-loop 

diagrams
Compute directly in SYM4,4

under the RDR scheme , 

since we must dress the 

gluon and scalar 

propagators differently

𝑔𝑀
𝑀 = 10, Tr𝐼32 = 8, the dimension 

for the gluon field             and for 

all momentum 𝑑 = 4 − 2𝜖

𝑔𝑀
𝑀 = 4, Tr𝐼4 = 4, the dimension 

for the gluon field 𝐷 = 4 and for 

all momentum 𝑑 = 4 − 2𝜖

Feynman diagrams 

at the 3-loop order

3-loop gluonic and 

scalar counterterm

with bare propagators

Compute directly 

in SYM4,4

𝒟 = 10

10

Free energy to 𝜆2 of SYM4,4 theory
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The 1-loop diagrams for SYM4,4

Dashed lines indicate a scalar field and dotted lines indicate a ghost field. The crosses are the thermal counterterms. 

The 2-loop diagrams for SYM4,4

The 3-loop diagrams with bare 

propagators for SYM1,10

The 3-loop gluonic and scalar counterterm

diagrams with bare propagators for SYM4,4

✓ Feynman diagrams up to the three-loop level

Free energy to 𝜆2 of SYM4,4 theory



➢ The resummed one-loop free energy

𝐹1−loop
resum = ℱideal 1 +

3+ 2

𝜋3
𝜆
3

2 . (8)
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Free energy to 𝜆2 of SYM4,4 theory

➢ The resummed two-loop free energy

(9).𝐹2−loop
resum = ℱideal −

3

2𝜋2
𝜆 −

3

2𝜋4
23

8
+

3 2

4
+

15log2

4
− log𝜆 𝜆2

where

which will generated infrared divergences which will be canceled byℱ3−loop
sct

and ℱ3−loop
bct .

➢ The resummed three-loop free energy

,

,

(10)

(11)

(12)



The final result for the resummed free energy up to order 𝜆2 for

SYM4,4 in the RDR scheme is

(13)
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1) It holds for all 𝑵𝒄 , and is independent of the momentum scale 𝝁

2) Infrared divergences are canceled by considering 𝑚𝐷
2 and 𝑀𝐷

2

3) No coupling constant renormalization counterterm is required, 

since 𝜆 does not run in SYM4,4

Free energy to 𝜆2 of SYM4,4 theory

➢ SYM4,4 thermodynamic functions to 𝒪(𝜆2) 



Based on the large-𝑁𝑐 structure of the strong-coupling expansion, we find 

the following form can reconstruct all known coefficients in both the weak-

and strong-coupling limits

To ensure that in the strong-coupling limit 

1) one obtains the correct asymptotic limit of 3/4 

2) terms of the form 𝜆−1/2, 𝜆−1/2log 𝜆, 𝜆−1, and 𝜆−1log 𝜆 do not appear in the 

strong-coupling expansion 

𝑆

𝑆ideal
=

1 + 𝑎𝜆 Τ1 2 + 𝑏𝜆 + 𝑐𝜆 Τ3 2 + 𝑑𝜆2 + 𝑒𝜆 Τ5 2

1 + 𝑎𝜆 Τ1 2 + 𝑏𝜆 +
4
3 𝑐𝜆

Τ3 2 +
4
3𝑑𝜆

2 +
4
3 𝑒𝜆

Τ5 2

Large-Nc generalized Padé approximant

.
(14)
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To fix the 

remaining 

coefficients 

Make sure it reproduces the weak-coupling 

result through 𝒪(𝜆2, 𝜆2log 𝜆)

Make sure it reproduces the strong-coupling 

result through 𝒪(𝜆−3/2)

𝑎 =
4𝜋2

135𝜁 3
+

2 3+ 2

3𝜋
,  𝑏 = 𝑏 +

3

2𝜋2
, 𝑐 =

2

15𝜁 3
, 

𝑑 =
180 3+ 2 𝜁 3 +8𝜋3

2025𝜋𝜁2 3
, 𝑒 =

2𝑏

15𝜁 3
−

3

5𝜋2𝜁 3
,  

𝑏 =
1

𝜋2
log

𝜆

𝜋2
+
16𝜋 45 3 + 2 𝜁 3 + 𝜋3

18225𝜁2 3

+
36 𝛾𝐸 +

𝜁′ −1
𝜁 −1

+ 69 2 + 59 − 75 log 2

36𝜋2

(15)
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Large-Nc generalized Padé approximant



Comparison for scaled entropy density  
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𝜆 ≲ 0.02

𝜆 ≲ 0.2

𝜆 ≲ 2

SYM4,4 : 𝜆 ≲ 10 ;  QCD : 𝜆 ≲ 3.5 at ො𝜇 = 1At 𝒪 𝜆2 , 𝒫/𝒫ideal < 1

The perturbative expansion of the SYM4,4 free energy might have 

better convergence than QCD

✓ Comparison of Τ𝓢 𝓢𝐢𝐝𝐞𝐚𝐥 between the update Pad ưe approximation and the 
perturbative results up to 𝒪(𝜆2)



➢ Finish the calculation resummed free energy to order 𝝀𝟐 for SYM4,4

under the RDR scheme.

➢ Construct a new large-𝑁𝑐 Pad ưe approximant based on our result.

➢ Compare our final result for the scaled entropy density to the 
updated Pad ưe approximants.

➢ Currently we compute the coefficient of λ5/2 in the SYM4,4  free 
energy. 

Summary
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Thanks
for

your
attention !


