

Recent progress in muon electric and magnetic dipole moments

http://web.tdli.sjtu.edu.cn/kimsiang84/ A recent review on muon g-2: Nucl. Phys. B 975 (2022) 115675

Kim Siang Khaw (许金祥) 中国物理学会高能物理分会学术年会 11 Aug 2022

Probing BSM with muons

- Muon is a very sensitive probe for BSM physics
- The Muon Trio in Precision and Intensity Frontiers
 - g-2, EDM, charged lepton flavor violation (cLFV)

Unveil new physics

Apr 7, 2021

Courtesy Yoshitaka Kuno

Virtual BSM particles

 ψ_2

Probe energy scale otherwise unreachable *E* > 1000 *TeV*

Very active research area!

Fermilab Muon g-2 (SJTU) Mu2e (SYSU)

Paul Scherrer Institut (PSI) muEDM (SJTU) MEG II, Mu3e, **MUSE, CREMA, etc**

J-PARC

> 20 muon physics experiments!

RUSSIA

中国散裂中子源 **MACE (IHEP, SYSU)**

中国强流重离子加速器装置 **Next generation muon g-2/EDM**

3

The Muon Moments: g-2 and EDM

$$\overrightarrow{\mu} = g \frac{e}{2m} \overrightarrow{s}$$

- g-2 can be calculated and measured to very high precision
 - SM Theory: 370 ppb
 - Fermilab experiment: 460 ppb

- Precision test of SM calculations
 - Sensitive to 4-loop QED, QCD, and EW
- The difference between theoretical and experimental values probes BSM physics
 - Complementary to LHC searches

- A search for new physics which is essentially "background-free"
 - The contribution from SM's CKM matrix is too small (d ~ 10⁻⁴² e cm)
 - Current limit d ~ 10⁻¹⁹ e cm
- Many BSM models predict large EDMs
 - Complementary to LHC searches
- Baryon asymmetry in the universe (BAU) requires more CPV
 - EDMs are good probes of BSM CPV

Standard Model Prediction of a_{μ}

Theory Initiative White Paper: T. Aoyama et al. Phys. Rept. 887 (2020)

More on HVP contributions

Theory initiative: estimate of ~2025 to sort all this out

Four generations of storage rings

CERN 1960-1970s **7.3 ppm** (completed)

Fermilab 2009-2023 0.14 ppm (in progress)

BNL 1990-2000s 0.54 ppm (completed)

J-PARC 2009-2030s 0.45 ppm (under construction)

Muon g-2 Collaboration (>200 collaborators, 35 institutes, 7 countries)

We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical Physicists And we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)!

Muon g-2 collaboration meeting at Elba, Summer 2019

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

Shanghai Jiao Tong

- Dresden
- Mainz

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata

μ

- Trieste
- Udine

Korea

1/1

- CAPP/IBS
- KAIST

VIII United Kingdom Lancaster/Cockcroft Liverpool Manchester

Liang Li Kim Siang Khaw SJTU/INPAC SJTU/TDLI

A grand view of the g-2 ring

24 calorimeters + 2 trackers

- 1. Inject muon beam into the storage ring and store them
- 2. Monitor the magnetic field with fixed and trolley probes
- 3. Detect positrons with calorimeters and trackers

Visualizing the measurements

Details of analysis in poster session yesterday!

x and more

n Acceptance i

Jun Kai Ng Kim-Siang Khaw

 ω_a Analysis

https://indico.ihep.ac.cn/event/16065/timetable/#20220810.detailed

nent in		
) 予改並研究所 ISENCEDAULATISSENTUR EINSTITUTE		
ch Status		
direct limits on the		
10 ⁻¹⁹ e cm		
on g-2 experiment[3]		
10-20		
$d_{th0} EDM[4]$		
2.3×10 ⁻²⁷ e cm		
or violation a strong hint of new		
Ŭ		
ent	l	
phase asymmetry be evidence of		
M's existence		
	Ì	
PlassAsprometry, AlCales, Diley = 1.0 Earl		
1 1000 1000 0 1000 1000 0 1000 1000		
4,=0		
PhoneAupremetry_AllCalco_Eldep > 1.0 GeV		
1. 1000 1000 1. 1000 1000 1. 100000, 1000 1. 100000, 1000		
og = 3.4 × 10 ° Con Top		
ary Analysis		
- 10 - 11 - 11 - 11 - 11 - 11 - 11 - 11		
and the state of t		
2014) 056006		
707544		
2009) 052008		
8 (2022) 131803		

Run-1 result (Apr 2021)

	Correction (ppb)	Uncertainty (ppb)
ul)	_	434
ic)	-	56
	489	53
	180	13
	-11	5
	-158	75
$(\phi) \times M(x, y, \phi)$	-	56
	-17	92
	-27	37
	_	10
	_	22
	_	0
	_	462

Current status

J-PARC Muon g-2/EDM

J-PARC (MLF)

µ+ (210 MeV) injection

Storage magnet

14

Ferm

nilab vs J-F	DARC		
	<image/>	<image/>	
	BNL-E821	Fermilab-E989	J-PARC-E34
Muon momentum	3	3.09 GeV/c	300 MeV/c
Lorentz γ		29.3	3
Polarization		100%	50%
Storage field	1	B = 1.45 T	B = 3.0 T
Focusing field	Elect	tric quadrupole	Very weak magnetic
Cyclotron period		149 ns	7.4 ns
Spin precession period		$4.37 \ \mu s$	$2.11 \ \mu s$
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}
Number of detected e^-	3.6×10^{9}	_	_
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	<70 ppb
EDM precision (stat.)	$0.2 \times 10^{-19} e$ ·	cm –	$1.5 \times 10^{-21} e \cdot cm$
(syst.)	$0.9 \times 10^{-19} e \cdot$	cm –	$0.36 \times 10^{-21} e \cdot cm$

15

Current status: experimental hall

T. Mibe, Schwinger Fest 2022

Current status First beam to H1 area (Jan 15, 2022)

Prog. Theor. Exp. Phys. 2018, 113G01

8

HB2 HS3 HSEP1

Intensity ~70% of expected in H1 area with partial currents to capture solenoids

Schedule and milestone

	2021	2022	2023	2024	2025	20
KEK Budget						
Surface muon	*	Beam at H1 area	7	r Beam at H2 area		
Bldg. and facility		*	Final design		*	Com
Muon source	*	Ionization test @S	52	★ Ionization tes	it at H2	
LINAC		*	80keV acceleration	on@S2 ★ 4.3 MeV@	• H2 📩	fabri
Injection and storage		+ ele	Completion of ctron injection tes	st		
Storage magnet				★ B-field probe ready	2	k Inst
Detector		★ Quoter va	ane prototype ★ N	Mass production re	eady	
DAQ and computing		★ grid serv ★ re	vice open 💦 ★ sr common computi șource usage start	nall DAQ system ng operation test	Ready	
Analysis			*	Tracking software	ready Analysis software	read

Schemes of ionization

0

decay

from Mu

2500

2000

1500

1000

80 keV acceleration of Mu⁻(µ⁺e⁻e⁻)

Demonstrated acceleration of Mu-Next: demonstration of acceleration of µ+

Region 1 10 < z < 20 (mm)[−]

10 12

O no laser-ablation

Time (µs)

- 4

Muon g-2 from muonium spectroscopy

Ground-state HFS theory Rydberg constant fine-structure $R_{\infty} \equiv \alpha^2 m_e c / (2h)$ constant nonrelativistic Fermi energy from $H_{\rm HFS}$ $\nu_{\rm HFS} = \frac{16}{3} (1 + a_{\mu}) \frac{m_e}{m_{\mu}} \frac{R_{\infty} c \alpha^2}{(1 + m_e/m_{\mu})^3} [1 + \delta_{\rm HFS}]$ electron-muon $\mathcal{O}(\alpha)$ correction mass ratio Z-exchange [CODATA 2018 + refs therein] $-65\,\mathrm{Hz}$ $\delta_{ m HFS} = \delta_{ m Dirac} + \delta_{ m rad} + \delta_{ m rec} + \delta_{ m rad-rec} + \delta_{ m weak} + \delta_{ m had}$ hadronic vacuum pol. = 237.7(1.5) Hz radiative-recoil radiative relativistic known up to $\mathcal{O}[(m_e/m_n)lpha^3)$ Total TH uncertainty $\sim 70\,{ m Hz}\,(16{ m ppb})$ known up to $\mathcal{O}(Z\alpha^{2})$ recoil (exact) dominanted by (yet) uncalculated QED $\sim 10\,\mathrm{Hz}$ uncertainty known up to including a_e corrections at three-loop order $\mathcal{O}[(m_e/m_\mu)(Z\alpha)^3]$ antimuon charge [Eides-Shelyuto IJMPA 2016] Z = 1 $\sim 60\,{ m Hz}$ uncertainty

Phys.Rev.Lett. 127 (2021) 25, 251801

BNL/Fermilab Muon EDM search

- Three approaches from BNL/FNAL experiment:
 - Vertical Angle Oscillation (Tracker)
 - Vertical Position Oscillation (Calorimeter)
 - Vertical Phase Gradient (Calorimeter)

 $\theta(t) = M + A_{\mu} \cos(\omega t + \Phi) + A_{\text{EDM}} \sin(\omega t + \Phi)$

$$f(t) = K + [S_{g2} \sin(\omega t)]$$
$$\times [S_{CBO} \sin(\omega_{CE})]$$
$$+ C_{CBO} \cos(\omega_{CE})]$$

PRD 80 (2009) 052008

Can we going beyond 10-21 e cm?

- How can we improve the sensitivity of the muon EDM search?
- In the parasitic approach, the tilt angle is the limiting factor
- For an EDM below 10⁻²¹ e cm, it will be very challenging to measure this small angle (multiple scattering effect + systematics like alignment)

The "frozen-spin" technique

$$\overrightarrow{\omega}_{s} - \overrightarrow{\omega}_{c} = -\frac{e}{m} \left\{ a\overrightarrow{B} + \left(\frac{1}{\gamma^{2}} - \frac{1}{m}\right) \right\}$$

- Developed in 2004 for the muon
- Freeze g-2 component by applying a radial E-field of $\sim aBc\beta\gamma^2$ \rightarrow no anomalous precession in the storage plane → EDM causes an increasing vertical polarization

PRL 93 (2004) 052001

$$\frac{\eta}{2}\left(\frac{\overrightarrow{E}}{c} + \overrightarrow{\beta} \times \overrightarrow{B}\right) \bigg\}$$

$$\omega_{n}: EDM$$

ω_a : g-2

22

Putting everything together

Principle of the FS-EDM measurement

Up-down asymmetry measured using upper and lower detectors

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2P E_{\rm f} \sqrt{N} \gamma \tau_{\mu} \alpha}$$

- *P* := initial polarization
- E_{f} := Electric field in lab
- \sqrt{N} := number of positrons
- $\tau_{\mu} :=$ lifetime of muon
- := mean decay asymmetry

muEDM at PSI with the FS approach

MROBED M search at PSI will commence in two phases:

Phase 1 @ 28 MeV/c

d~10⁻²³ e cm by 2031

25

Potential beamlines for muEDM

PSI Experimental Hall

The general experimental idea

- Muons enter the uniform magnetic field
- A radial magnetic field pulse stops them within a weakly focusing field where they are stored
- Radial electric field 'freezes' the spin so that the precession due to the g-2 is cancelled

Radial kick field ~100 ns duration

Annual beam tests at PSI

- PSI Beam Test 2019
 - Characterization of potential beam lines
- PSI Beam Test 2020
 - Study multiple scattering of positrons at low momental
- PSI Beam Test 2021
 - Characterization of potential electrode material with positrons and muons
- PSI Beam Test 2022
 - Performance test of entrance/collimating channel
 - Performance test of TPC muon tagger/tracker

Projected Final Sensitivity of 10-23 e cm

Key parameters	Symbols	Phase 1 @ 28 MeV/c	Phase 2 @ 125 MeV/c
Muon beam rate		2 x 10 ⁶ s ⁻¹	1.2 x 10 ⁸ s ⁻¹
After collimation		1 x 10 ⁶ s⁻¹ (ε=50%)	1.2 x 10 ⁸ s ⁻¹ (ε=0.5%)
After beam injection		3 kHz (ε=0.3%)	480 kHz (ε=60%)
Gamma factor	γ	1.03	1.77
Initial polarization	Р	0.95	0.95
Electric field	Er	0.3 MV/m	2 MV/m
Positron detection rate		0.5 kHz	80 kHz
Muon decay asymmetry	α	0.3	0.3
Detections (200 days)	N	4x10 ¹¹	10 ¹²
Sensitivity		< 3 x 10 ⁻²¹ e cm	< 6 x 10 ⁻²³ e cm

 $\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2PE_{\rm f}\sqrt{N} \gamma \tau_{\mu} \alpha}$

Collaboration activities

+ monthly meetings and online collaboration meetings in between

Schedule and milestone

Simulations Conception/Design Prototyping Acquisition/Assembly Tests/Measurements

- Full proposal for both phases to CHRISP committee
- Magnet call for tender / precursor design fix 2/a
- Precursor ready for assembly/commissioning b
- Technical design report / frozen spin demonstration 3/c
- First data for precursor muEDM
- Magnet delivered, characterized and accepted
- Successful commissioning / start of data taking 5
- End of data acquistion for muEDM 6

Rich physics program connected to muon g-2

Many interesting and high-impact experiments for young students and postdocs!

ONE THING IS FOR SURE: THE HUNT IS ON, AND NEW DISCOVERIES ARE ON THE HORIZON.

Muonium 1S-2S + HFS @ PSI/J-PARC

Muon g-2 @ Fermilab

Muon g-2 Theory Initiative

STAY TUNED!

