Projected Three-Point Energy-Correlator to NNLL in Collinear Limit

Zhen Xu

with Wen Chen, Yibei Li, Xiaoyuan Zhang, HuaXing Zhu, in preparation

August 10, 2022 Dalian

Precision Collider Physics and Event Shapes

Event shape variables for testing QCD and for improving our understanding of its dynamics:

Thrust :

$$T = \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|}$$

Energy-energy correlator :

$$EEC(\theta) = \frac{\sum_{i,j} E_i E_j \delta(\cos \theta - \cos \theta_{ij})}{\left(\sum_i E_i\right)^2}$$

Other important examples include jet-broadening, spherocity and C-parameter, etc.

Resummation of Energy Correlators in Collinear Limit

The energy-energy correlator in terms of $z = (1 - \cos \theta)/2$,

$$\text{EEC}(z) \equiv \frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dz} = \sum_{i,j} \int d\sigma \, \frac{E_i E_j}{Q^2} \delta\left(z - \frac{1 - \cos\theta_{ij}}{2}\right)$$

In the collinear limit, interesting for jet-substructure, dominated by large logarithms ln z.

$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma^{e^{z}e^{-}}(z)}{dz} = \frac{2a_{s}}{z} + \frac{a_{s}^{2}}{z} \left(-\frac{173}{15} \ln z + \cdots \right) + \frac{a_{s}^{3}}{z} \left[\frac{20317}{450} \ln^{2} z + \ln z \left(\frac{3704}{81} \zeta_{3} - \frac{343252}{1215} \zeta_{2} - \frac{686702711}{1093500} \right) + \cdots \right] = \frac{2a_{s}}{z} + \frac{a_{s}^{2}}{z} \left(-11.5333 \ln z + 81.4809 \right) + \frac{a_{s}^{3}}{z} \left(45.1489 \ln^{2} z - 1037.73 \ln z + 2871.36 \right)$$

The logarithmic series to all-orders,

$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dz} = \sum_{L=1}^{\infty} \sum_{j=-1}^{L-1} a_s^L c_{L,j} \mathcal{L}^j(z) + \dots \text{ where } \mathcal{L}^j(z) = \left[\ln^j z/z\right]_+$$
$$= \underbrace{\sum_{L=1}^{\infty} a_s^L c_L \left[\ln^{L-1} z/z\right]_+}_{\text{LL}} + \underbrace{\sum_{L=2}^{\infty} a_s^L d_L \left[\ln^{L-2} z/z\right]_+}_{\text{NLL}} + \underbrace{\sum_{L=3}^{\infty} a_s^L f_L \left[\ln^{L-3} z/z\right]_+}_{\text{NNLL}} + \cdots$$

All-order resummation achieved through to NNLL via RG evolution. [L. Dixon, I. Moult, H.X. Zhu, arXiv:1905.01310]

Generalization to Higher Point Energy Correlators

Three-point energy correlator (EEEC)

$$\frac{1}{\sigma_{\text{tot}}} \frac{d^3 \sigma}{dx_1 dx_2 dx_3} = \sum_{ijk} \int d\sigma \frac{E_i E_j E_k}{Q^3} \times \delta\left(x_1 - \frac{1 - \cos \theta_{jk}}{2}\right) \delta\left(x_2 - \frac{1 - \cos \theta_{ik}}{2}\right) \delta\left(x_3 - \frac{1 - \cos \theta_{ij}}{2}\right)$$

captures non-trivial shape dependence of the events or jets.

- defined and calculated in the collinear limit in [H. Chen, M.X. Luo, I. Moult, T.Z. Yang, X.Y. Zhang, H.X. Zhu, arXiv:1912.11050];
- full analytic calculation at LO in N = 4 SYM [K. Yan, X.Y. Zhang, 2203.04349], and in QCD [T.Z. Yang, X.Y. Zhang, 2208.01051].

Show interesting mathematical structure and benefit the understanding of trijet events as well as jet-substructure. See also HuaXing's talk.

Generalization to Higher Point Energy Correlators

Projected *N*-point energy correlator (ENC)

P.T. Komiske, I. Moult, J. Thaler, H.X. Zhu, 2201.07800

- Enjoy simple factorization property. ►
- Ratio between ENC and EEC more ► robust to non-perturbative effects.
- Nice representation with light ray operators.

See also Hao Chen's talk.

Resummation Strategy and Ingredients Needed for NNLL

The factorization of projected N-point correlators in the collinear limit $z \rightarrow 0$,

$$\Sigma^{[N]}\left(z,\ln\frac{Q^{2}}{\mu^{2}},\mu\right) = \int_{0}^{z} dz' \,\frac{d\sigma^{[N]}}{dz}\left(z',\ln\frac{Q^{2}}{\mu^{2}},\mu\right) \stackrel{z\to0}{=} \int_{0}^{1} dx \, x^{N} \vec{J}^{[N]}\left(\ln\frac{zx^{2}Q^{2}}{\mu^{2}},\mu\right) \cdot \vec{H}\left(x,\frac{Q^{2}}{\mu^{2}},\mu\right)$$

Evolve the Jet function and the Hard function to a common scale with the RG equations.

٨

$$\frac{d\vec{H}(x,\ln\frac{Q^2}{\mu^2})}{d\ln\mu^2} = -\int_x^1 \frac{dy}{y} \,\widehat{P}(y) \cdot \vec{H}\left(\frac{x}{y},\ln\frac{Q^2}{\mu^2}\right) \qquad \qquad \mu_H = Q$$

$$\frac{d\vec{J}^{[N]}(\ln\frac{zQ^2}{\mu^2})}{d\ln\mu^2} = \int_0^1 dy \, y^N \vec{J}^{[N]}\left(\ln\frac{zy^2Q^2}{\mu^2}\right) \cdot \widehat{P}(y)$$

Towards NNLL for ENC in Collinear Limit:

Jet function and hard function through to 2-loop needed as boundary conditions.

Time-like splitting function, or corresponding moments thereof, and β -function to 3-loop. The last piece for E3C, the 2-loop jet function, has now been calculated.

Calculation of the Two-loop Jet Function

The gluon jet function for EEEC, then project to the side with largest angle,

$$J_{g}(x_{1}, x_{2}, x_{3}, Q, \mu^{2}) = \int \frac{dl^{+}}{2\pi} \frac{1}{2(N_{C}^{2} - 1)} \operatorname{Tr} \int d^{4}x e^{il \cdot x} \langle 0 | \mathcal{B}_{n, \perp}^{a, \mu}(x) \boxed{\widehat{\mathcal{M}}_{\text{EEEC}}} \delta(Q + \bar{n} \cdot \mathcal{P}) \delta^{2}(\mathcal{P}_{\perp}) \mathcal{B}_{n, \perp}^{a, \mu}(0) | 0 \rangle$$

$$\overbrace{\sum_{i,j,k} \frac{E_{i}E_{j}E_{k}}{Q^{3}} \delta\left(x_{1} - \frac{\theta_{ij}^{2}}{4}\right) \delta\left(x_{2} - \frac{\theta_{ik}^{2}}{4}\right) \delta\left(x_{3} - \frac{\theta_{ki}^{2}}{4}\right)}$$

Similarly for quark jet function with collinear quark field $\chi_n \equiv W_n^{\dagger} \xi_n$.

▷ Contact contributions (*i*, *j*, *k* not all non-identical) effectively depend on only one angle.

$$\begin{split} \delta\left(x-\frac{1-\cos\theta_{ij}}{2}\right) &= \frac{(p_i \cdot p_j)}{x} \delta\left[2x(p_i \cdot Q)(p_j \cdot Q) - p_i \cdot p_j\right] \\ &= \frac{1}{2\pi i} \frac{(p_i \cdot p_j)}{x} \left\{\frac{1}{\left[2x(p_i \cdot Q)(p_j \cdot Q) - p_i \cdot p_j\right] - i0} - \frac{1}{\left[2x(p_i \cdot Q)(p_j \cdot Q) - p_i \cdot p_j\right] + i0}\right\} \end{split}$$

IBP reduction to linear combination of same master integrals as in NLO EEC calculation. [L. Dixon, M.X. Luo, V. Shtabovenko, T.Z. Yang, H.X. Zhu, 1801.03219]

Calculation of the Two-loop Jet Function

p

The gluon jet function for EEEC, then project to the side with largest angle,

$$J_{g}(x_{1}, x_{2}, x_{3}, Q, \mu^{2}) = \int \frac{dl^{+}}{2\pi} \frac{1}{2(N_{C}^{2} - 1)} \operatorname{Tr} \int d^{4}x e^{il \cdot x} \langle 0 | \mathcal{B}_{n, \perp}^{a, \mu}(x) \boxed{\widehat{\mathcal{M}}_{\text{EEEC}}} \delta(Q + \bar{n} \cdot \mathcal{P}) \delta^{2}(\mathcal{P}_{\perp}) \mathcal{B}_{n, \perp}^{a, \mu}(0) | 0 \rangle$$

$$\overbrace{\sum_{i,j,k} \frac{E_{i}E_{j}E_{k}}{Q^{3}} \delta\left(x_{1} - \frac{\theta_{j}^{2}}{4}\right) \delta\left(x_{2} - \frac{\theta_{jk}^{2}}{4}\right) \delta\left(x_{3} - \frac{\theta_{ki}^{2}}{4}\right)}^{\mathcal{D}}$$

Similarly for quark jet function with collinear quark field $\chi_n \equiv W_n^{\dagger} \xi_n$.

 $\mathcal{E}(\vec{n}_2)$

IBP reduction in the parametric representation. [W. Chen, arXiv:1902.10387; 1912.08606; 2007.00507] Performed also direct integration with the proper parametrization.

Calculation of the Two-loop Jet Function

Combining the contact contributions and the non-identical contributions,

$$\frac{dJ_q^{2-\text{loop}}}{dz} \stackrel{\mu=0}{=} \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{ \delta(z) \left[3.656C_F T_F n_f - 0.6627C_F^2 - 7.664C_F C_A \right] \rightarrow \text{jet function constant} \right. \\ \left. + \underbrace{\frac{1}{z} \left[C_F T_F n_f \left(0.695 \ln z - 4.144 \right) + C_F^2 \left(2.944 \ln z - 1.050 \right) + C_F C_A \left(-2.448 \ln z + 11.13 \right) \right] \right\}}_{-1} \right\}$$

$$\frac{dI_8^{2-\text{loop}}}{dz} \stackrel{\mu=0}{=} \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{ \delta(z) \left[-3.343 C_F T_F n_f - 43.38 C_A T_F n_f + 33.13 C_A^2 + 8.201 T_F^2 n_f^2 \right] \rightarrow \text{jet function constant} \right. \\ \left. + \frac{1}{z} \left[C_F T_F n_f \left(-0.4125 \ln z + 0.0875 \right) + C_A T_F n_f \left(-0.4125 \ln z - 7.064 \right) \right. \\ \left. + C_2^2 \left(0.28 \ln z + 20.69 \right) + T_2^2 n_z^2 \left(0.2 \ln z - 1.092 \right) \right] \right\}$$

checking the leading power distribution with Event2.

[→] leading power distribution

E3C Distribution and its Ratio to EEC at NNLL+NLO

Evident convergence from LL to NLL to NNLL, with decreasing scale uncertainty.

Uncertainty bands for E3C distribution barely overlap

 \implies Higher order perturbative contributions sizable.

 α_s -dependence of the slope of the ratio

 \implies extraction of the coupling α_s from jet data.

So far, parton level only. $\mu_J = \sqrt{z} x Q$

 \implies sensitive to non-perturbative QCD effects in the collinear limit $z \rightarrow 0$.

Non-Perturbative Corrections to the ENC

In the collinear limit, the ENC is sensible to the low-energy non-perturbative QCD effects.

$$\frac{d\sigma^{\text{PT}}}{dz} \sim \frac{\alpha_s(\mu)}{z} \cdot \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^0 \cdot \left[\sum_{L=1}^{\infty} a_s^L c_L \left[\ln^L z\right] + \cdots\right] \quad (\text{RG Improved PT})$$

$$\frac{d\sigma^{\text{NP-soft}}}{dz} \sim \frac{\alpha_s(\mu)}{z^{3/2}} \cdot \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^1 + \cdots \qquad (\text{Dispersive analysis at LL})$$

$$\frac{d\sigma^{\text{NP-collinear}}}{dz} \sim \frac{\alpha_s^2(\mu)}{z^2} \cdot \left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^2 + \cdots \qquad (\text{Renormalon analysis at NLL})$$

Soft contribution gives leading non-perturbative power correction in Λ_{QCD} . Collinear contribution at non-perturbative level relevant only below $z \sim (\Lambda_{QCD}/Q)^2$.

Extract a single non-perturbative parameter from Pythia data to include $O(\Lambda_{QCD})$ correction.

Including the Non-Perturbative Corrections

Preliminary

In the collinear limit, hadronization correction to E3C is enhanced compared with the perturbative contribution.

Hadronization correction to E3C/EEC ratio are in fact largely reduced.

Summary

- Energy correlators are powerful event-shape variables in precision collider physics.
- E3C and its ratio with EEC obtained at NNLL+NLO accuracy.
- ▶ Non-perturbative corrections to ENC are sizable, and are largely cancelled in ratios.

Outlook

- ► Higher point (*N* > 3) energy correlators at NNLL
 - two-loop jet function constants
- Resummation for LHC processes
 - more complicated hard function
- ► Combining small-*z* and small-*x* resummation for energy correlators
 - joint resummation with the small-x contributions and NP corrections

Extra Slides

Parton-Level and Hadron-Level Pythia Data

Hadronization correction is sizable in the collinear region.

Iterative Solution to the Jet Function RGE

Logarithmic structure of the jet function

$$\frac{d\vec{J}(\ln\frac{zQ^2}{\mu^2})}{d\ln\mu^2} = \int_0^1 dy \, y^\nu \vec{J}(\ln\frac{zy^2Q^2}{\mu^2}) \cdot \widehat{P}(y)$$

Determine the *n*-th order coefficient of the logarithms in the jet function,

$$J_q = \sum_{n=0}^{\infty} a_s^n(\mu) q_{\rm L}^{(n)} \left(\ln \frac{\mu^2}{zQ^2} \right)^n + \sum_{n=1}^{\infty} a_s^n(\mu) q_{\rm NL}^{(n)} \left(\ln \frac{\mu^2}{zQ^2} \right)^{n-1} + \cdots$$

and similarly for the gluon jet. Recursive relations for coefficients from the RG equation

$$\begin{split} & q_{\mathrm{L}}^{(n)} \cdot n = (n-1)\beta_0 q_{\mathrm{L}}^{(n-1)} - \left(q_{\mathrm{L}}^{(n-1)} \gamma_{T,qq}^{(0)} + g_{\mathrm{L}}^{(n-1)} \gamma_{T,gq}^{(0)} \right) \\ & g_{\mathrm{L}}^{(n)} \cdot n = (n-1)\beta_0 g_{\mathrm{L}}^{(n-1)} - \left(q_{\mathrm{L}}^{(n-1)} \gamma_{T,qq}^{(0)} + g_{\mathrm{L}}^{(n-1)} \gamma_{T,gq}^{(0)} \right) \end{split}$$

Coefficient of logarithmic correction can be obtained iteratively to high orders.

- Asymptotically divergent.
- Truncation at finite order.
- Residual compensated by nonperturbative corrections.

Strong QCD Coupling and Collider Processes

▷ Strong coupling at low-energy QCD

▶ Proton-proton collision at colliders

Image from: Brenna Flaugher CTEQ School 2002

QCD factorization of hadronic cross sections

$$\frac{d\sigma}{dQ^2} \simeq \sum_{i,j=q,g} \int_0^1 dx_1 dx_2 \mathcal{H}_{ij}(Q^2,\mu^2) f_{i\leftarrow h}(x_1,\mu^2) f_{j\leftarrow h}(x_2,\mu^2)$$

perturbative expansion of the partonic hard scattering cross section

$$\mathcal{H}_{ij} = \sum_{n=0}^{\infty} \alpha_s^n \, \mathcal{H}_{ij}^{(n)}$$

Need to take into account also the non-perturbative corrections to the observables.

Perturbation Theory at Large Orders and Renormalons

▶ Perturbative expansion as an *asymptotic* series:

$$f(\alpha) = \sum f_n \alpha^n, \qquad f_n \stackrel{n \to \infty}{\sim} a^n n^b n!$$

Analytic continuation with Borel transformation, ambiguous for fixed-sign factorials,

$$B[f](t) = \sum \frac{f_n}{n!} t^n \quad \Longrightarrow \quad f^B(\alpha) = \int_0^\infty e^{-t/\alpha} B[f](t)$$

e.g. $\sum \frac{|a|^n n!}{n!} t^n = \frac{1}{1 - |a|t}$ stronger divergence \implies larger *ambiguity* suppressed as $e^{-1/\alpha |a|}$

IR renormalons arise from the logarithms from renormalization procedure:

$$\int_{0}^{q} \frac{dk^{2}}{k^{2-m}} \left[|\beta_{0}| \ln\left(\frac{q^{2}}{k^{2}}\right) \right]^{n} \sim \left(\frac{2|\beta_{0}|}{m}\right)^{n} n! \quad \stackrel{\text{QCD}}{\Longrightarrow} \quad \text{power corrections } \delta \sim \left(\Lambda_{\text{QCD}}/Q\right)^{a/2|\beta_{0}|}$$

