A formal notion of genericity and its application to supersymmetric Wess-Zumino models

Zheng Sun

Sichuan University

CHEP 2022, 11 August 2022

(J.Brister, Z.Sun, G.Yang, JHEP12(2021)199, [2111.09570])

A formal and analytical notion of genericity

Application to SUSY vacua in generic R-symmetric Wess-Zumino models

Summary and generalization

Notion of genericity

Genericity in high energy physics

- Generic: descriptive of an entire class, lacking specificity.
- Genericity in high energy physics: no parameter tuning.
- Small change of parameters from particular values (measured by experiments) does not affect the key property of the model, so no fine-tuning is needed.
- Related to naturalness and hierarchy problems.
- Genericity of the form of model is not considered here.

Building a generic model

- Criteria (1): fitting and predicting experiments.
- Criteria (2): symmetries, gauge invariance, renormalization...
- Criteria of genericity: parameters {c_α} satisfying (2) should take generic values and give consistent results for (1).

An analytic formalism of genericity

Genericiy represented by a function

- A key property of the model represented as $F(c_{\alpha})$.
- The model possesses the property at $c_{\alpha}^{(0)} \Leftrightarrow F(c_{\alpha}^{(0)}) = C$.
- The property is generic: $F(c_{\alpha}) = C$ for c_{α} near $c_{\alpha}^{(0)}$.

An analytic formalism

- The model is described by a a set of parameters {φ_i}, whose expectation values ⟨φ_i⟩ = φ_i(c_α) depend on c_α.
- The notion of genericity is then expressed as: $F(\phi_i(c_\alpha^{(0)}), c_\alpha^{(0)}) = F(\phi_i(c_\alpha^{(0)} + \delta c_\alpha), c_\alpha^{(0)} + \delta c_\alpha) = C.$ (2)
- Assuming $F(\phi_i, c_\alpha)$ and $\phi_i(c_\alpha)$ are differentiable at $c_\alpha^{(0)}$, $\Rightarrow \frac{\mathrm{d}F}{\mathrm{d}c_\alpha} = \frac{\partial F}{\partial c_\alpha} + \frac{\partial F}{\partial \phi_i} \frac{\partial \phi_i}{\partial c_\alpha} = 0$ at $c_\alpha^{(0)}$.

▶ We will apply this formalism to SUSY Wess-Zumino models.

Supersymmetry (SUSY)

SUSY and SUSY breaking

- SUSY algebra: supercharges connecting fermions and bosons.
- Supermultiplets: chiral (ϕ, ψ, F) , vector $(A_{\mu}, \lambda, \overline{\lambda}, D)$.
- Physics described by a SUSY invariant action.
- ▶ Why SUSY: phenomenology and math implications.
- Spontaneous SUSY breaking in a hidden sector, mediated to the Standard Model sector ⇒ soft SUSY breaking terms.

Wess-Zumino models for F-term SUSY breaking

- A superpotential $W(\phi_i)$, a Kähler potential $K(\phi_i^*, \phi_j)$, $\Rightarrow V = K^{\overline{i}j} (\partial_{\phi_i} W)^* \partial_{\phi_j} W$, with $K_{\overline{i}j} = \partial_{\phi_i^*} \partial_{\phi_j} K$, $K_{\overline{i}j} K^{\overline{i}k} = \delta_j^k$.
- ▶ SUSY breaking $\Leftrightarrow \langle V \rangle > 0 \Leftrightarrow \langle -F_i^* \rangle = \langle \partial_{\phi_i} W \rangle \neq 0.$
- ► In SUGRA, $V = e^{K/M_{\mathsf{P}}^2} (K^{\bar{i}j} (D_{\phi_i} W)^* D_{\phi_j} W 3W^* W/M_{\mathsf{P}}^2)$, SUSY breaking $\Leftrightarrow \langle D_{\phi_i} W \rangle = \langle \partial_{\phi_i} W + W \partial_{\phi_i} K/M_{\mathsf{P}}^2 \rangle \neq 0$.

The Nelson-Seiberg theorem and its extensions

The Nelson-Seiberg theorem

- An U(1) R-symmetry transforms supercharges.
- $\hat{R}(\alpha)\phi_i = e^{ir_i\alpha}\phi_i$, R-charges r_i of ϕ_i .
- R-invariance of the action $\Rightarrow r_W = 2$.

F-term SUSY breaking at the true vacuum \Rightarrow R-symmetries,

spotaneous R-symmetry breaking at the vacuum.

(A.E.Nelson, N.Seiberg, [hep-ph/9309299])

Requiring genericness in both parameters and R-charges.

The revised and generalized theorem

- ► SUSY breaking ⇔ R-symmetries and one of the following:
 - W is singular at the origin;
 - ▶ $N_2 > N_0$ (R-charge 2 fields are more than R-charge 0 fields).

(Z.Kang, T.Li, Z.Sun, [1209.1059]; Z.Li, Z.Sun, [2006.00538])

• Requiring genericness in both parameters and R-charges.

SUSY vacua in R-symmetric models

R-symmetric and R-symmetry breaking SUSY vacua

- ► R-symmetries and N₂ ≤ N₀ ⇒ R-symmetric SUSY vacua. (Z.Sun, [1109.6421])
- ► Counterexamples with $N_2 > N_0$ and non-generic R-charges \Rightarrow R-symmetry breaking SUSY vacua.

(Z.Sun, Z.Tan, L.Yang, [1904.09589]; A.Amariti, D.Sauro, [2005.02076]; Z.Sun, Z.Tan, L.Yang [2106.08879]; Z.Li, Z.Sun, [2107.09943])

• Both cases give SUSY vacua with $\langle W \rangle = 0$.

Applications

- ► $\langle \partial_i W \rangle = 0$ and $\langle W \rangle = 0$ gives $\langle D_i W \rangle = 0$ and $\langle V \rangle = 0$ in SUGRA extension of Wess-Zumino models.
- Model building, e.g. in string theory: SUSY breaking F-terms and the cosmological constant are perturbatively set to zero, and dynamically generated to archive an exponentially small scale (compared to the Planck scale).

SUSY vacua in generic R-symmetric models

Vanishing W at SUSY vacua

► Under an R-symmetry,
$$\hat{R}(\alpha)\phi_i = e^{ir_i\alpha}\phi_i$$
, $\hat{R}(\alpha)W = e^{2i\alpha}W$,
 $\Rightarrow \frac{\mathrm{d}}{\mathrm{d}\alpha}\hat{R}(\alpha)W = 2iW = ir_i\phi_i\partial_iW \Rightarrow W = \frac{1}{2}r_i\phi_i\partial_iW$.

► SUSY vacua: $\langle \partial_i W \rangle = 0 \Rightarrow \langle W \rangle = 0$, no need for genericity.

Term-by-term vanishing W in generic models

- Generic R-symmetric Wess-Zumino models: $W = c_{\alpha} p_{\alpha}(\phi_i)$.
- Assuming SUSY vacua generically exist \Rightarrow solutions to $\partial_i W = 0$ and W = 0 generically exist at $\langle \phi_i \rangle = \phi_i(c_\alpha)$.

 Taking ⟨W⟩ as the F in the previous notion of genericity, ⇒ d⟨W⟩/dc_α = ∂⟨W⟩/∂c_α + ⟨∂_iW⟩∂φ_i/∂c_α = 0.
 ⟨∂_iW⟩ = 0 ⇒ ∂⟨W⟩/∂c_α = p_α(⟨φ_i⟩) = 0, W vanishes term-by term at SUSY vacua.

(J.Brister, Z.Sun, G.Yang, [2111.09570])

Summary and generalization

Genericity and SUSY vacua in R-symmetric models

• A generic property:
$$F(c_{\alpha}) = C$$
 for c_{α} near $c_{\alpha}^{(0)}$,
 $\Rightarrow \frac{\mathrm{d}F}{\mathrm{d}c_{\alpha}} = \frac{\partial F}{\partial c_{\alpha}} + \frac{\partial F}{\partial \phi_{i}} \frac{\partial \phi_{i}}{\partial c_{\alpha}} = 0$ at $c_{\alpha}^{(0)}$.

► $\langle \partial_i W \rangle = 0$ in generic R-symmetric Wess-Zumino models $\Rightarrow \langle W \rangle = 0$ term-by-term.

 Constraint on the form of W may contribute to the classification of R-symmetric Wess-Zumino models.

Generalization to scalar potentials with scaling symmetries

- A scaling symmetry: $\hat{S}(\lambda)x^{\mu} = \lambda x^{\mu}$, $\hat{S}(\lambda)\phi_i = \lambda^{s_i}\phi_i$.
- Scaling invariance of the action $-\int d^4x V \Rightarrow s_V = -4$.
- Stationary points satisfying ⟨∂_iV⟩ = 0 ⇒ ⟨W⟩ = 0, in generic models ⇒ ⟨V⟩ = 0 term-by-term.
- Applications in scale-invariant systems?