

Observation of $\gamma\gamma \rightarrow \tau\tau$ in ultraperipheral lead-lead collisions and constraints on τ g-2 with the ATLAS detector

AT AS EXPERIMENT

Xinyan Liu, based on: arxiv:2204.13478

Improved precision of a_{τ} measurements is a vital part of the τ -lepton compositeness test and the physics beyond the Standard Model. The τ -lepton pair production in ultra-peripheral heavy-ion collisions, Pb+Pb \rightarrow Pb($\gamma\gamma \rightarrow \tau\tau$)Pb, is observed by ATLAS with a significance exceeding 5σ in 1.44 nb^{-1} of $\sqrt{s_{NN}}$ = 5.02 TeV data. The $\gamma\gamma \rightarrow \tau\tau$ process gives sensitivity to anomalous electromagnetic couplings of τ -lepton since it contains two $\tau\tau\gamma$ vertices. To measure a_{τ} , a profile likelihood fit is performed to the leading lepton transverse momentum distribution, using a control region to constrain systematic uncertainties. The observed 95% confidence-level intervals are $a_{\tau} \in (-0.058, -0.012) \cup (-0.006, 0.025)$. The results are competitive with existing lepton-collider constraints.

Figure 1: Diagrams showing photon-induced τ -lepton pair production in UPC, with the τ -leptons decaying into signatures targeted by the event selection. The cross-section is enhanced by Z4 relative to pp collisions.

The Tau anomalous magnetic moment

 a_{τ} calculations are based on the $\tau \tau \gamma$ vertex parameterization with the general form-factor decomposition. It exploits the near-zero virtuality of initial-state photons to directly relate $a\tau$ to the form factors. $\tau \tau \gamma$ vertex function:

 $i\Gamma_{\mu}^{(\gamma\ell\ell)}(p',p) = -ie\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i}{2m_{\ell}}\sigma_{\mu\nu}q^{\nu}F_{2}(q^{2}) + \frac{1}{2m_{\ell}}\gamma^{5}\sigma_{\mu\nu}q^{\nu}F_{3}(q^{2})\right]$

2. Detection with ATLAS

Figure 4: p_T^{μ} distributions of the four analysis regions for the data and postfit expectation, The fit describes the data well.

5. Background estimation

• Exclusive dimuon production in association with exclusive ρ^0 $\gamma A \rightarrow \rho^0 \rightarrow \pi \pi$ produced simultaneously with $\gamma \gamma \rightarrow \mu \mu$ event as a background in μ 3T-SR. Require three-track system mass m_{3trk} <1.7 GeV

Figure 2: Event display for an exclusive $\gamma\gamma \rightarrow \tau\tau$ candidate from μ 3T-SR in lead-lead collision during Pb+Pb data recorded by ATLAS in 2018.

3. Zero Degree Calorimeters (ZDC)

Require zero neutrons in both ion directions as detectable in to suppress the photonuclear background events. For $\gamma\gamma \rightarrow \tau\tau$ or $\gamma\gamma \rightarrow ll$ production expect 60-70% of events to have no neutrons on either side (0n0n).

to suppresses this background and can be considered negligible.

Diffractive photonuclear events

This background is caused by the low particle activity and event topologies with rapidity gaps and we estimated using fully data-driven method.

• $\gamma\gamma \rightarrow \mu\mu\gamma$ production

The $\gamma\gamma \rightarrow \mu\mu\gamma$ background is estimated with the aid of MC samples. Comparing the $\gamma\gamma \rightarrow \mu\mu(\gamma)$ simulated events with data in 2μ -CR shows reasonable data-to-MC agreement in differential distributions.

Region	Data	$\begin{array}{c} \text{Signal} \\ \gamma \gamma \to \tau \tau \end{array}$	Background $\gamma \gamma \rightarrow \mu \mu(\gamma)$	Background $\gamma \gamma \rightarrow e e$	Background $\gamma \gamma \rightarrow \text{jet}$	Background photonuclear
1M1T SR	532.0	462.4	70.2	0.0	0.1	13.5
1M3T SR	85.0	83.9	6.7	0.0	0.3	2.8
1M1E SR	39.0	32.7	2.8	0.0	0.0	0.0

Table 1: Summary of SR yields with breakdown of background contributions.

6. a_{τ} measurements result

Figure 3: Energies of forward neutral particles measured in two ZDC arms.

4. Analysis strategy

- Tau not very energetic
- \rightarrow standard (jet-based) ATLAS leptons reconstruction not applicable
- \rightarrow rely on reconstructing charged decay products
- Events categorized based on decay of second τ . Selected events must contain exactly one muon, which targets a muonic decay of one of the τ . Three signal regions categorize events by decay signature of the other τ : \rightarrow muon + 1 track (μ 1T-SR)
- \rightarrow muon + 3 tracks (μ 3T-SR)
- \rightarrow muon + electron (μ e-SR)
- Using 2 muons (2 μ -CR) control region for the $\gamma\gamma \rightarrow \mu\mu$ process to constrain systematic uncertainties.

Figure 5: Measurements of a_{τ} from fits to individual signal regions, and from the combined fit compared with three existing measurements.

- The impact of systematic uncertainties on the final results is small relative to statistical uncertainties which limits the measurement precision.
- The best-fit value of a_{τ} is $a_{\tau} = -0.042$, with the corresponding 68% CL and 95% CL intervals being (-0.051, -0.031) and $(-0.058, -0.012) \cup (-0.006, 0.025)$, respectively.