Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV

> Mingxu He¹, on behalf of the ATLAS collaboration ¹IHEP, CAS

Motivation

Higgs couplings to vector bosons and fermions have been discovered and studied through single Higgs production and decay.

Higgs self-coupling has not been

Di-Higgs SM signal strength and cross section

>As this is the first time to combine three full Run 2 di-Higgs channels, di-Higgs only results are presented

Observed and expected 95% CL upper limits on the signal strength for di-Higgs production **Observed and expected 95% CL** exclusion limits for the di-Higgs combination

discovered by experiment.

Higgs self coupling

Study Higgs self-coupling through constraints on coupling modifier κ_{λ}

 $\kappa_{\lambda} \equiv \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$

Single- and double-Higgs combination results

Single Higgs and di-Higgs with full Run 2 dataset are combined for the first time

- >In ATLAS experiment, Higgs self-coupling can be probed directly via di-Higgs production
- >And indirectly probed via NLO electroweak corrections on single-Higgs production and decay
- Complete LHC Run 2 dataset of 13 TeV proton-proton collisions collected with the **ATLAS** detector

Channel	Integrated luminosity (fb ⁻¹) 139	
$HH \rightarrow b\bar{b}\gamma\gamma$		
$HH \rightarrow b\bar{b}\tau\bar{\tau}$	139	
$HH \rightarrow b\bar{b}b\bar{b}$	126	
$H \rightarrow \gamma \gamma$	139	
$H \to Z Z^* \to 4\ell$	139	
$H \rightarrow \tau^+ \tau^-$	139	
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$ (ggF,VBF)	139	
$H \rightarrow b\bar{b}$ (VH)	139	
$H \rightarrow b\bar{b}$ (VBF)	126	
$H \rightarrow b\bar{b}$ $(t\bar{t}H)$	139	

>Two assumptions: \succ HH+H κ_{λ} only: κ_{λ} is the only source of physics beyond SM \succ HH+H κ_{λ} generic: κ_{λ} , $\kappa_V, \kappa_t, \kappa_b, \kappa_\tau$ all included for the source of physics beyond SM

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

- > Three di-Higgs analyses with full Run 2 dataset are combined for the first time*
- Single and di-Higgs with full Run 2 dataset are combined for the first time*

noating

Summary

LHC Run 2 dataset collected with the ATLAS detector > Three di-Higgs analyses are combined > HH signal strength and cross section upper limits Single and di-Higgs are combined > The most stringent constraints on the Higgs boson self-interactions