Cross Terms in the Fit Function for the Precession Frequency Analysis in the Fermilab Muon g-2 Experiment

Yonghao Zeng zyh1678783412@sjtu.edu.cn

I. Muon g-2 experiment and ω_a fit function

2. Beam dynamics^[1] and detector acceptance^[2]

- Cyclotron frequency Horizontal betatron frequency
- Vertical betatron frequency
- Coherent Betatron Oscillation frequency (CBO) ~ 0.37 MHz
- Vertical Waist frequency (WV)
- ~ 6.70 MHz

O No significant peak at 1.9 MHz in Run-1, but not the case in Run-2 [3,4].

II. ToyMC studies to understand the origin of 1.9 MHz

Beam dynamics

O Muon beam harmonically oscillates in both x and y directions.

$$x(t) = x_0 + A_x \cos(2\pi f_x t + \phi_x)$$

$$y(t) = y_0 + A_y \cos(2\pi f_y t + \phi_y)$$

Three modes

- Only consider detector's acceptance effeciency to generate muons.
- O Study three oscillation modes separately.

$$\begin{aligned} N_{\text{gen}}(t) &= N_0 * \epsilon_x(x) * \epsilon_y(y) \\ &= N_0 * \epsilon_x(x(t)) * \epsilon_y(y(t)) \end{aligned}$$

D			
Parameters	x-only oscillation	y-only oscillation	x and y oscillation
N_0	10000	10000	10000
x_0 [mm]	0	-	0
A_x [mm]	15.0	-	15.0
f_x [MHz]	6.332	-	6.332
ϕ_x [rad]	0	-	0
$y_0 [mm]$	-	0	0
A_y [mm]	-	15.0	15.0
f_y [MHz]	-	2.2	2.2
ϕ_y [rad]	-	0	0

Initial parameters

Acceptance map

O Fit acceptance map with polynominal function.

$$\epsilon_{\rm fit}(x,y) = a_0 + a_1 x + a_2 y^2 \\ + a_3 y^4 + a_4 x y^2 + a_5 x y^4 \\ {\rm avg_accept_calol_t} \\ {\rm avg_accept_cal$$

Fitting and FFT analysis

O Fit with traditional form.

$$\begin{split} N_{\mathrm{fit}}(t) &= N_0 * N_x(t) * N_y(t) \\ N_x(t) &= 1 + A_{CBO} \cos(2\pi f_{CBO} t + \phi_{CBO}) \end{split}$$

$$N_x(t) = 1 + A_{CBO}\cos(2\pi f_{CBO}t + \phi_{CBO})$$

$$N_y(t) = 1 + A_{VW} \cos(2\pi f_{VW} t + \phi_{VW}) + A_{4y-c} \cos(2\pi f_{4y-c} t + \phi_{4y-c}) ,$$

 Expand the original function and float the cross terms' amplitude !!!

$$\begin{split} N(t) &= N_0 * N_x * N_y \\ N_x * N_y &= 1 + A_{CBO} \cos(2\pi f_{CBO} t + \phi_{CBO}) \\ &+ A_{VW} \cos(2\pi f_{VW} t + \phi_{VW}) \\ &+ A_{4y-C} \cos(2\pi f_{4y-C} t + \phi_{4y-C}) \\ &+ A_{VW+CBO} \cos\left[2\pi (f_{VW} + f_{CBO}) t + \phi_{VW} + \phi_{CBO}\right] \\ &+ A_{VW-CBO} \cos\left[2\pi (f_{VW} - f_{CBO}) t + \phi_{VW} - \phi_{CBO}\right] \\ &+ A_{4y-c+CBC} \cos\left[2\pi (f_{4y-c} + f_{CBO}) t + \phi_{4y-c} + \phi_{CBO}\right] \\ &+ A_{4y-c-CBC} \cos\left[2\pi (f_{4y-c} - f_{CBO}) t + \phi_{4y-c} - \phi_{CBO}\right] \end{split}$$

Conclusion and discussion

- The cross terms come from the correlation between x and y in position acceptance.
- The amplitudes of cross terms depend on the strength of the correlation.
- The puzzle can be resolved by floating cross terms' amplitude in ω_a fitting.

Reference:

28 Parameters

$$N = N_0 * N_{cbo}(t) * N_{vw}(t) * N_{dcbo}(t) * N_{vo}(t) * \Lambda(t)$$

$$* e^{-t/\tau} \left[1 - A_0 * A_{cbo}(t) * cos \left(\omega_a t + \phi_0 * \phi_{cbo}(t) \right) \right]$$

- [3] H. Binney, UW ω_a update: t' clustering pileup, 2C+2D fitting, Muon g-2 docdb 25545 (2021)
- [4] J. Stapleton, Run 2 Lessons from IRMA, Muon g-2 docdb 25688 (2021)