A Boosted Decision Tree Model for the Positron Acceptance in
李政道研究要
Tsung Daol lie Institute
the Muon g－2 Experiment
Jun Kai Ng
Kim－Siang Khaw
Measurement of Muon＇s Magnetic Anomaly

Anomalous Spin Precession

\boldsymbol{e}^{+}Energy Spectrum Modulation at $\boldsymbol{\omega}_{a}$

Phase－Acceptance Systematic Correction to ω_{a}

Time Dependent Shift in Fitted $\boldsymbol{\omega}_{\boldsymbol{a}}$ Phase
 $\frac{d \phi}{d t}=\frac{d Y_{R M S}}{d t} \cdot \frac{d \phi}{d Y_{R M S}}$

1．Time dependent beam effect
2．Dependent of phase on decay position（Phase－acceptance）

Phase Map Construction

$N(t)=N_{0} e^{-t / \tau}\left[1+A \cos \left(\omega_{a} t+\phi_{a}\right)\right]$
$\Delta \phi \sim 2 \mathrm{mrad}$
Limited by Geant4 simulation！

Decay x［mm］
Fast Simulation of Muon Storage Ring
1．Muon beam \＆spin dynamics Analytical calculation or Beam Optics Simulations（eg：BMAD，COSY）

Geant4－based simulation
2．Muon decay to positrons
\longrightarrow Geant4 MuonDecayWithSpin Class
3．Positron transportation and EM Shower Development

Energy Deposition in Calorimeters via Boosted Decision Tree Algorithm

