

Triangle Singularity in the Production of T_{cc} ⁺ and a Soft Pion

报告人: 蒋军

In collabaration with Eric Braaten, Liping He (何丽萍) and Kevin Ingles Based on arXiv:2202.03900 (accepted by PRD)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,8.8-8.11,2022,辽宁师范大学

CONTENTS

)

1 Introduction

2 Production of *T_{cc}*⁺ & Soft Pion

3 Summary & Discussion

Triangle Singularity

 $\sqrt{}$

Triangle Singularity

$$\checkmark \qquad T_{+}(q^{2},\gamma^{2}) = \left(1 + \frac{mb}{2M_{T}c}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_{T}c} \left(\sqrt{a} - \sqrt{a+b+c}\right)$$
$$E_{\triangle +} = \frac{M_{*}}{4\mu^{2}} \left(\sqrt{2\mu E_{+} - \gamma^{2}} - i\sqrt{m/M_{T}}\gamma\right)^{2} \quad \text{where} \quad E_{+} = \delta_{0+} - \varepsilon_{T} - i\Gamma_{*+}$$

Log divergence in the limit of both binding energy and decay width go to zero.

 $E_{\triangle +} \longrightarrow (M_T/2M)\delta_{0+} = 6.1 \text{ MeV}$

Triangle Singularity

 \bigcirc

$$V \qquad \qquad V_{+}(q^{2},\gamma^{2}) = \left(1 + \frac{mb}{2M_{T}c}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_{T}c} \left(\sqrt{a} - \sqrt{a+b+c}\right)$$
$$E_{\Delta +} = \frac{M_{*}}{4\mu^{2}} \left(\sqrt{2\mu E_{+} - \gamma^{2}} - i\sqrt{m/M_{T}}\gamma\right)^{2} \quad \text{where} \quad E_{+} = \delta_{0+} - \varepsilon_{T} - i\Gamma_{*+}$$

Log divergence in the limit of both binding energy and decay width go to zero. $E_{\triangle +} \longrightarrow (M_T/2M)\delta_{0+} = 6.1 \text{ MeV}$

Square-root branch point at $E = E_+$ from the \sqrt{a} term.

Limiting behaviour of $T_+(q^2, \gamma^2)$ determined by the interplay of above two items.

 \bigcirc

Triangle Singularity

 $\bigvee \quad Black(|\varepsilon_T|, \Gamma_{*+}) = (0, 0)$

 $Red(|\varepsilon_T|, \Gamma_{*+}) = (0, 83 \ keV)$

 $Purple (|\varepsilon_T|, \Gamma_{*+}) = (360 \ keV, 0)$

Blue $(|\varepsilon_T|, \Gamma_{*+}) = (360 \text{ keV}, 83 \text{ keV})$

Solid: complete amplitude Dashed: logarithmic approximation

 T_{cc} + (3875) or $T_{cc1}^{f}(3875)^{+}$

Binding Enegy & W	'idth
$\delta m_{\rm BW} = -273 \pm 61 \pm 5$	$^{+11}_{-14}$ keV c^{-2} ,
$\Gamma_{\rm BW}=410\pm165\pm43$	$^{+18}_{-38}$ keV,
$\delta m_{\rm pole} = -360 \pm 40^{+4}_{-0} \mathrm{keV}$	V/c^2 , Resonant-like
$\Gamma_{\rm pole} = 48 \pm 2^{+0}_{-14} {\rm keV},$	coupling!

LHCb, Nature Physics 18, 751 (2022) LHCb, Nature Commun. 13, 3351 (2022)

 T_{cc} + (3875) or $T_{cc1}^{f}(3875)^{+}$

Binding Enegy & Width	
$\delta m_{\rm BW} = -273 \pm 61 \pm 5 {+11 \atop -14} {\rm keV} c^{-2}$,	
$\Gamma_{ m BW} = 410 \pm 165 \pm 43 {}^{+18}_{-38} { m kc}$	eV,
$\delta m_{\rm pole} = -360 \pm 40^{+4}_{-0} \mathrm{keV}/c^2,$	Resonant-like
$\Gamma_{\rm pole} = 48 \pm 2^{+0}_{-14} \mathrm{keV},$	coupling!
Characteristic Size	
$R_a \equiv -\Re a = 7.16 \pm 0.51 \mathrm{fm}$	Large!
$R_{\Delta E} \equiv \frac{1}{n} = 7.5 \pm 0.4 \text{fm}$	Laigei

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

LHCb, Nature Physics 18, 751 (2022) LHCb, Nature Commun. 13, 3351 (2022)

 T_{cc} + (3875) or $T_{cc1}^{f}(3875)^{+}$

Binding Enegy & Width $\delta m_{BW} = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV } c^{-2},$ $\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV},$ $\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$ $\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$ Binding Enegy & Width $\Gamma_{0} = 48 \pm 2^{+0}_{-14} \text{ keV},$

 \bigcirc

Large!

Characteristic Size $R_a \equiv -\Re a = 7.16 \pm 0.51 \text{ fm}$ $R_{\Delta E} \equiv \frac{1}{n} = 7.5 \pm 0.4 \text{ fm}$

 JP & I
 S-wave coupling

 $J^P = 1^+$ to $D^{*+}D^o$!

 I = 0

1 Introduction Motivation

 \checkmark

Better candidate as a <u>loosely bound</u> <u>S-wave molecule</u> than *X(3872)*

1 Introduction Motivation

 $\sqrt{}$

 \checkmark

Better candidate as a <u>loosely bound</u> <u>S-wave molecule</u> than *X(3872)*

Along with above mesearments, observation of the narrow peak from triangle singularity would support D^*D molecule picture of T_{cc}^+ .

2 Production of T_{cc}^{+} & Soft Pion

T_{cc}^+ : $D^{*+}D^0$ channel only

Triangle Singularity

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}} \left(\mathcal{A}_{D^{+}D^{0}} \right)^{*} \right\rangle \frac{G_{\pi}^{2} M_{T} m \gamma_{T}}{4\pi^{2}} (2\mu_{\pi T} E)^{3/2} \left| T_{+} (2\mu_{\pi T} E, \gamma^{2}) \right|^{2}, \\
\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}} \left(\mathcal{A}_{D^{+}D^{0}} \right)^{*} \right\rangle \frac{3G_{\pi}^{2} M_{T} m \gamma_{T}}{32\pi^{2}} (2\mu_{\pi T} E)^{3/2} \left| T_{0} (2\mu_{\pi T} E, \gamma^{2}) \right|^{2},$$

where
$$\left\langle \mathcal{A}_{D^+D^0} (\mathcal{A}_{D^+D^0})^* \right\rangle \equiv \frac{1}{\text{flux}} \sum_y \int d\Phi_{(DD)+y} \mathcal{A}_{D^+D^0+y} (\mathcal{A}_{D^+D^0+y})^*$$

Binding energies are 320, 360, and 400 keV in order of increasing energy at the peak

2 Production of T_{cc}⁺ & Soft Pion $T_{cc}^+: D^{*+}D^0$ channel only

Peaks in the cross sections above background

$$\sigma \left[(T_{cc}^{+} \pi^{+})_{\Delta} \right] \approx (8.6 \pm 0.5) \, 10^{-3} \, \left(\frac{m_{\pi}}{\Lambda} \right)^{2} \sigma [T_{cc}^{+}, \mathrm{no} \pi]$$

$$\sigma \left[(T_{cc}^{+} \pi^{0})_{\Delta} \right] \approx (4.8 \pm 0.2) \, 10^{-3} \, \left(\frac{m_{\pi}}{\Lambda} \right)^{2} \sigma [T_{cc}^{+}, \mathrm{no} \pi]$$
Where
$$\sigma [T_{cc}^{+}, \mathrm{no} \pi] = \left\langle \mathcal{A}_{D^{+}D^{0}} (\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{3}{2\mu} |\psi_{T}(r=0)|^{2}$$

Where

is cross section for T_{cc}^+ without any pion with relative momentum smaller than a ultraviolet cutoff.

2 Production of T_{cc}^{+} & Soft Pion

T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ coupled-channel

Triangle Singularity

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{+}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}) \right|^{2},
\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{3G_{\pi}^{2}M_{T}m\gamma_{T}}{32\pi^{2}} (2\mu_{\pi T}E)^{3/2} \\
\times \left(\left| T_{0}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}) \right|^{2} + \left| T_{0}^{'(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}_{0+}) \right|^{2} \right) + \frac{d\sigma}{dE}[T_{cc}^{+}\pi^{-}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{-}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}_{0+}) \right|^{2}.$$

Blue, red and black for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$, respectively.

2 Production of T_{cc}^+ & Soft Pion

T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ coupled-channel

Blue, red and black for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$, respectively.

Triangle Singularity

 $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{+}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}) \right|^{2},$ $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{3G_{\pi}^{2}M_{T}m\gamma_{T}}{32\pi^{2}} (2\mu_{\pi T}E)^{3/2}$ $\times \left(\left| T_{0}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}) \right|^{2} + \left| T_{0}^{\prime(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}_{0+}) \right|^{2} \right),$ $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{-}] = \left\langle \mathcal{A}_{D^{+}D^{0}}(\mathcal{A}_{D^{+}D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{-}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}_{0+}) \right|^{2}.$

No triangle singularity in the production of $T_{cc}^+\pi^$ channel, because the mass of D^{*0} is 2.4 MeV below $D^+\pi^-$ threshold which prevents the D^{*0} and D^+ from being simultaneously on shell.)

2 Production of T_{cc}^{+} & Soft Pion $T_{cc}^{+}: (D^{*+}D^{0} - D^{*0}D^{+})/\sqrt{2}$ coupled-channel

Asymptotic behaviors at large E

 $\frac{d\sigma}{dE}[T_{cc}^+\pi^+] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \operatorname{no}\pi] \frac{8G_\pi^2 \mu_{\pi T}^2 \mu_\pi}{3\pi} (2\mu_{\pi T} E)^{-1/2},$ $\frac{d\sigma}{dE}[T_{cc}^+\pi^0] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \operatorname{no}\pi] \frac{2G_\pi^2 \mu_{\pi T}^2 \mu_\pi}{\pi} (2\mu_{\pi T} E)^{-1/2},$ $\frac{d\sigma}{dE}[T_{cc}^+\pi^-] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \operatorname{no}\pi] \frac{8G_\pi^2 \mu_{\pi T}^2 \mu_\pi}{3\pi} (2\mu_{\pi T} E)^{-1/2}.$

D

2 Production of T_{cc}^+ & Soft Pion $T_{cc}^+: (D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ coupled-channel

Asymptotic behaviors at large E

 \bigcirc

 $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^{+}, \operatorname{no}\pi] \frac{8G_{\pi}^{2}\mu_{\pi T}^{2}\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2},$ $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{0}] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^{+}, \operatorname{no}\pi] \frac{2G_{\pi}^{2}\mu_{\pi T}^{2}\mu_{\pi}}{\pi} (2\mu_{\pi T}E)^{-1/2},$ $\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{-}] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^{+}, \operatorname{no}\pi] \frac{8G_{\pi}^{2}\mu_{\pi T}^{2}\mu_{\pi}}{3\pi} (2\mu_{\pi T}E)^{-1/2}.$

Solution \mathbf{V} Cross sections integrated up to E_{max} much larger than triangle-singularity energy

$$\sigma \left[T_{cc}^{+} \pi^{+} \right] \approx \left(3.2 \sqrt{\frac{E_{\max}}{m_{\pi}}} - 0.0_{-1.3}^{+1.8} \right) \times 10^{-2} \,\sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no} \,\pi \right]$$
$$\sigma \left[T_{cc}^{+} \pi^{0} \right] \approx \left(2.4 \sqrt{\frac{E_{\max}}{m_{\pi}}} - 0.0_{-1.0}^{+1.3} \right) \times 10^{-2} \,\sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no} \,\pi \right]$$
$$\sigma \left[T_{cc}^{+} \pi^{-} \right] \approx \left(3.2 \sqrt{\frac{E_{\max}}{m_{\pi}}} - 1.3_{-0.5}^{+0.3} \right) \times 10^{-2} \,\sigma^{(\Lambda)} \left[T_{cc}^{+}, \text{no} \,\pi \right]$$

Errors from $\Lambda = 2^{0\pm 1} m_{\pi}$

2 Production of T_{cc}^{+} & Soft Pion $T_{cc}^{+}: (D^{*+}D^{0} - D^{*0}D^{+})/\sqrt{2}$ coupled-channel

$$\sigma \left[T_{cc}^+ \, \pi^+ \right] - \sigma \left[T_{cc}^+ \, \pi^- \right] \approx \left(1.3^{+1.5}_{-0.8} \right) \times 10^{-2} \, \sigma^{(\Lambda)} \left[T_{cc}^+, \, \mathrm{no} \, \pi^- \right]$$

2 Production of T_{cc}^+ & Soft Pion $T_{cc}^+: (D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ coupled-channel

LHCb data

0 🚺 117 **±** 16 events

Inclusive production: $\sigma^{A}[T_{cc}^{+}, no \pi] + \sigma[T_{cc}^{+}\pi^{+}] + \sigma[T_{cc}^{+}\pi^{0}] + \sigma[T_{cc}^{+}\pi^{-}]$ with $E < E_{max} = q_{max}^{2}/(2\mu_{\pi T})$

 \bigcirc

V Fractions of events for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^-$: (3.0^{+1.5})% and (1.8^{+0.2})%, respectively

2 Production of T_{cc}^+ & Soft Pion $T_{cc}^+: (D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$ coupled-channel

LHCb data

- 117 ± 16 events
- Inclusive production: $\sigma^{A}[T_{cc}^{+}, no \pi] + \sigma[T_{cc}^{+}\pi^{+}] + \sigma[T_{cc}^{+}\pi^{0}] + \sigma[T_{cc}^{+}\pi^{-}]$ with $E < E_{max} = q_{max}^{2}/(2\mu_{\pi T})$

- V Fractions of events for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^-$: (3.0^{+1.5})% and (1.8^{+0.2})%, respectively
- Fractions of events in the peak from triangle singularity for $T_{cc}^+\pi^+$: $(1.2^{+1.3}_{-0.7})\%$ Small but all with energy within 1 MeV of the peak (6.1 MeV above threshold)

Summary

 $\sqrt{}$

D

We used the coupled-channel model to calculate the cross sections for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$ at energies near the triangle-singularity peaks and at higher energies.

 \bigcirc

Summary

 \checkmark

D

Fraction of $T_{cc}^+\pi^+$ events in the narrow peak is $(1.2^{+1.3}_{-0.7})\%$, all within 1 MeV of the peak at 6.1 MeV.

 \mathcal{D}

 \bigcirc

Summary

We used the coupled-channel model to calculate the cross sections for $T_{cc}^+\pi^+$, $T_{cc}^+\pi^0$ and $T_{cc}^+\pi^-$ at energies near the triangle-singularity peaks and at higher energies.

Backgrounds can be determined experimentally by measuring $T_{cc}^+\pi^-$ events.

Fraction of $T_{cc}^+\pi^+$ events in the narrow peak is $(1.2^{+1.3}_{-0.7})\%$, all within 1 MeV of the peak at 6.1 MeV.

 \bigcirc

 $\langle \checkmark \rangle$

 \checkmark

Obervation of the narrow peak of triangle singularity supports molecule picture of T_{cc}^{+} .

Discussion

 $\langle \sqrt{} \rangle$

Molecule vs Commpact tetraquark

Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.

Discussion

Molecule vs Commpact tetraquark

Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.

A compact tetraquark T_{cc}^{+} would have to have a suppressed coupling to $D^{*+}D^{0}$. Goldstone nature of the pion requires the production amplitude of $T_{cc}^{+}\pi$ to be proportional to the relative momentum of the pion. Therefore $d\sigma/dE$ should increase like $E^{3/2}$.

Discussion

Molecule vs Commpact tetraquark

Well above the triangle singularity energy E_{Δ} , $d\sigma/dE$ for $T_{cc}^{+}\pi^{+}$ decreases as $E^{-1/2}$.

A compact tetraquark T_{cc}^{+} would have to have a suppressed coupling to $D^{*\Box}D^{0}$. Goldstone nature of the pion requires the production amplitude of $T_{cc}^{+}\pi$ to be proportional to the relative momentum of the pion. Therefore $d\sigma/dE$ should increase like $E^{3/2}$.

Measurements on the differential cross sections above the triangle singularity energy E_{Δ} provide important clues to the nature of T_{cc}^{+} .

 \bigcirc

)

Triangle Singularity in the Production of T_{cc}^{+} and a Soft Pion

汇报人: 蒋军

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,8.8-8.11,2022,辽宁师范大学

Triangle amplitudes

$$T_{+}(q^{2},\gamma^{2}) = \left(1 + \frac{mb}{2M_{T}c}\right) \frac{1}{\sqrt{c}} \log \frac{\sqrt{a} + \sqrt{c} + \sqrt{a+b+c}}{\sqrt{a} - \sqrt{c} + \sqrt{a+b+c}} + \frac{m}{M_{T}c} \left(\sqrt{a} - \sqrt{a+b+c}\right)$$

$$a = (\mu/\mu_{\pi})q^{2} - M_{*}E_{+},$$

$$b = -2(\mu/\mu_{\pi})(\mu/M)q^{2} + M_{*}E_{+} - \gamma^{2},$$

$$c = (\mu/M)^{2}q^{2}.$$

$$T_{0}(q^{2},\gamma^{2}) \text{ can be obtained by replacing } E_{+} \text{ by } E_{0}: E_{0} = \delta_{00} - \varepsilon_{T} - i(\Gamma_{*0} + \Gamma_{*+})/2$$

Logarithmic approximationcan

$$T_{+}^{(\log)}(q^{2},\gamma^{2}) = \sqrt{\frac{M/M_{T}}{\mu_{\pi T}\delta_{0+}}} \left(\frac{2M}{M_{*}}\log\frac{\sqrt{a} + (\mu/M)q + i\gamma}{\sqrt{a} - (\mu/M)q + i\gamma} + \frac{m}{M_{*}}\right)$$

Triangle amplitudes in coupled-channel model

with

$$T_{+}^{(\Lambda)}(q^{2},\gamma^{2}) = \frac{\sqrt{(\Lambda+\gamma)\Lambda}}{\sqrt{1+Z_{0+}}(\Lambda-\gamma)} \left[T_{+}(q^{2},\gamma^{2}) - T_{+}(q^{2},\Lambda^{2}) \right]$$

$$T_{0}^{(\Lambda)}(q^{2},\gamma^{2}) = \frac{\sqrt{(\Lambda+\gamma)\Lambda}}{\sqrt{1+Z_{0+}}(\Lambda-\gamma)} \left[T_{0}(q^{2},\gamma^{2}) - T_{0}(q^{2},\Lambda^{2}) \right]$$

$$T_{0}^{\prime(\Lambda)}(q^{2},\gamma^{2}_{0+}) = -\frac{\sqrt{(\Lambda+\gamma)\Lambda}}{\sqrt{1+Z_{0+}}(\Lambda-\gamma_{0+})} \left[T_{0}(q^{2},\gamma^{2}_{0+}) - T_{0}(q^{2},\Lambda^{2}) \right]$$

$$T_{-}^{(\Lambda)}(q^{2},\gamma^{2}_{0+}) = -\frac{\sqrt{(\Lambda+\gamma)\Lambda}}{\sqrt{1+Z_{0+}}(\Lambda-\gamma_{0+})} \left[T_{-}(q^{2},\gamma^{2}_{0+}) - T_{-}(q^{2},\Lambda^{2}) \right]$$

where $T_{-}(q^2, \gamma_{0+}^2)$ can be obtained by the right side of $T_{+}(q^2, \gamma^2)$ with the coefficients

 $a = (\mu/\mu_{\pi})q^{2} - M_{*}E_{-},$ $b = -2(\mu/\mu_{\pi})(\mu/M)q^{2} + M_{*}E_{-} - \gamma_{0+}^{2},$ $c = (\mu/M)^{2}q^{2}.$

$$E_{-} = \delta + \delta_{+-} - \varepsilon_T - i\Gamma_{*0}$$
 and $\delta_{+-} = M_{*0} - M_{+} - m_{-} = -2.38 \text{ MeV}$

 \bigcirc

 \bigcirc

 \bigcirc

Asymptotic behavior of triangle amplitudes at large E

or

$$T_+(q^2,\gamma^2) \longrightarrow \left(\frac{M}{M_*}\log\frac{\sqrt{M_T/m}+1}{\sqrt{M_T/m}-1} + \frac{\sqrt{M_Tm}}{M_*}\right)\frac{1}{q} - \frac{2iM_Tm\gamma}{M_*^2q^2}$$

Subtraction cancels the terms that decrease as 1/q, so the triangle amplitude decreases as $1/q^2$:

$$D T^{(\Lambda)}_+(q^2,\gamma^2) \longrightarrow i \, \frac{2\sqrt{(\Lambda+\gamma)\Lambda} \, M_T m}{\sqrt{1+Z_{0+}} \, M_*^2 \, q^2}.$$

$$T^{(\Lambda)}_{+}(q^2,\gamma^2) \longrightarrow i \frac{4\mu_{\pi T}}{M_*\sqrt{\gamma_T/2\pi}} \frac{\psi^{(\Lambda)}_T(r=0)}{\sqrt{1+Z_{0+}}} \frac{1}{q^2}.$$

V

We verify that this gives the large- q^2 limit for a general wavefunction with a finite wavefunction at the origin.

 \sim

Why is smooth cutoff wavefunction more physical at large E?

We would like to estimate the cross sections at large *E*, so we should make sure the asymptotic behavior of $d\sigma/dE$ is correct.

What is correct asymptotic behavior?

low-energy scattering of the two particles

$$f(E) = \frac{1}{-\gamma + \sqrt{-2\mu E}}.$$

with
$$E = k^2/(2\mu) + i\epsilon$$

 \bigcirc

$$\operatorname{Im}[f(E+i\epsilon)] = \frac{\pi\gamma}{\mu}\delta(E+\gamma^2/2\mu) + \frac{\sqrt{2\mu E}}{\gamma^2 + 2\mu E}\theta(E)$$

Delta function: the production of the bound state.

Theta function: the production of the two particles above the threshold, $\propto E^{-1/2}$.

 \checkmark

Why is smooth cutoff wavefunction more physical at large E?

$$\frac{d\sigma}{dE}[T_{cc}^{+}\pi^{+}] = \left\langle \mathcal{A}_{D+D^{0}}(\mathcal{A}_{D+D^{0}})^{*} \right\rangle \frac{G_{\pi}^{2}M_{T}m\gamma_{T}}{4\pi^{2}} (2\mu_{\pi T}E)^{3/2} \left| T_{+}^{(\Lambda)}(2\mu_{\pi T}E,\gamma^{2}) \right|^{2}$$

At large *E*, since $T_{+}^{(\Lambda)}(q^{2},\gamma^{2}) \longrightarrow i \frac{2\sqrt{(\Lambda+\gamma)\Lambda}M_{T}m}{\sqrt{1+Z_{0+}}M_{*}^{2}q^{2}}.$

 \bigcirc

so we have the physical asymptotic behavior:

$$\frac{d\sigma}{dE}[T_{cc}^+\pi^+] \longrightarrow \sigma^{(\Lambda)}[T_{cc}^+, \operatorname{no}\pi] \frac{8G_\pi^2 \mu_{\pi T}^2 \mu_\pi}{3\pi} (2\mu_{\pi T} E)^{-1/2}$$

 $\sqrt{}$

Why is smooth cutoff wavefunction more physical at large E?

$$T_{+}^{(\Lambda)}(q^2,\gamma^2) = \frac{\sqrt{(\Lambda+\gamma)\Lambda}}{\sqrt{1+Z_{0+}}(\Lambda-\gamma)} \left[T_{+}(q^2,\gamma^2) - T_{+}(q^2,\Lambda^2)\right]$$

where
$$T_+(q^2,\gamma^2) \longrightarrow \left(\frac{M}{M_*}\log\frac{\sqrt{M_T/m}+1}{\sqrt{M_T/m}-1} + \frac{\sqrt{M_Tm}}{M_*}\right)\frac{1}{q} - \frac{2iM_Tm\gamma}{M_*^2q^2}$$

Subtraction cancels terms that decrease as 1/q, so the triangle amplitude decreases as $1/q^2$

Recall the replacement that considers both the smooth cutoff and doubled channel:

For **D**^{*+}**D**⁰ configuration, **D**⁰ propagator replacement

$$\frac{1}{k^2 + \gamma^2} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

 \checkmark

Why is smooth cutoff wavefunction more physical at large E?

Smooth cutoff wavefunction leads the correct asymptotic behavior! The D propagator replacement

$$\frac{1}{k^2 + \gamma^2} \longrightarrow \frac{1}{\sqrt{1 + Z_{0+}}} \frac{\sqrt{(\Lambda + \gamma)\Lambda}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

is equivalent to the universal wavefunction replacement

$$\psi(k) = \frac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2} \longrightarrow \psi^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2}\right)$$

 \bigcirc

2 Coupled-channel Model

XEFT

D

Effective field theory for charm mesons and pions

Validity: kinetic energy of pions ~ m_{π} , kinetic energy of charm mesons ~ m_{π}^2/M ~ 10*MeV*

Fleming, Kusunoki, Mehen and Van Kolck, PRD 76, 034006 (2007)

2 Coupled-channel Model

XEFT

 \bigcirc

- Effective field theory for charm mesons and pions
- Validity: kinetic energy of pions $\sim m_{\pi}$, kinetic energy of charm mesons $\sim m_{\pi}^2/M \sim 10 MeV$

 \bigcirc

 \bigcirc

Galilean-invariant formulation of XEFT: conservation of pion and (anti)charm numbers, conservation of kinetic masses Pion number: sum of the numbers of π , D^* , \overline{D}^* mesons

Fleming, Kusunoki, Mehen and Van Kolck, PRD 76, 034006 (2007) Braaten, PRD 91, 114007 (2015) Braaten, He, Jiang, PRD 103, 036014 (2021)
Wavefunction for loosely bound S-wave molecule

Sharp UV cutoff

V

V

Spatial wavefunction:

 $\psi(r) = \frac{\sqrt{\gamma/2\pi}}{r} \exp(-\gamma r)$

Momentum-space: $\psi(k) = rac{\sqrt{8\pi\gamma}}{k^2+\gamma^2}$

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$. Braaten, Hammer, Phys. Rept. 428, 259 (2006)

Wavefunction for loosely bound S-wave molecule

Sharp UV cutoff

V

$$\psi(r) = \frac{\sqrt{\gamma/2\pi}}{r} \exp(-\gamma r)$$

Momentum-space: $\psi(k) = rac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2}$

UV divergent integral:

 $\psi(r=0) = \int d^3k \, \psi(k)/(2\pi)^3$

Sharp momentum cutoff: $|{m k}| < (\pi/2) \Lambda ext{ with } \Lambda \gg \gamma$

At the origin: $\psi(r=0) = (\Lambda - \gamma) \sqrt{\gamma/2\pi}$

Wavefunction for loosely bound S-wave molecule

Smooth UV cutoff

D

Smooth momentum cutoff:

 \bigcirc

$\psi^{(\Lambda)}(k) =$	$\frac{\sqrt{8\pi(\Lambda+\gamma)\Lambda\gamma}}{\Lambda\gamma}$	(1	1
	$\overline{\Lambda - \gamma}$	$\left(\frac{1}{k^2+\gamma^2}\right)^2$	$\left(\frac{1}{k^2 + \Lambda^2}\right)$

At the origin: $\psi^{(\Lambda)}(r\!=\!0) = \sqrt{(\Lambda+\gamma)\Lambda\gamma/2\pi},$

At large k:

$$\psi^{(\Lambda)}(k) \longrightarrow \sqrt{8\pi(\Lambda + \gamma)^3\Lambda\gamma}/k^4$$

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$. Suzuki, PRD 72, 114013 (2005)

Wavefunction for loosely bound S-wave molecule

Why?

Same momentum dependence at small k

More physical qualitative behavior at large k, so we can make preditions.

Binding momentum: $\gamma = \sqrt{2\mu|\varepsilon|}$. Suzuki, PRD 72, 114013 (2005)

D

|lsoscalar T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda+\gamma)\Lambda\gamma}}{\Lambda-\gamma_{cc}} \left(\frac{1}{k^2+\gamma_{\rm cc}^2} - \frac{1}{k^2+\Lambda^2}\right)$$
$$\gamma_{\rm cc} = \sqrt{2\mu(\delta+|\varepsilon|)}$$

|lsoscalar T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda+\gamma)\Lambda\gamma}}{\Lambda-\gamma_{cc}} \left(\frac{1}{k^2+\gamma_{\rm cc}^2} - \frac{1}{k^2+\Lambda^2}\right)$$
$$\gamma_{\rm cc} = \sqrt{2\mu(\delta+|\varepsilon|)}$$

 \checkmark

Coupled-channel model for a loosely bound molecule with two channels related by symmetry

$$\psi^{(\Lambda)}_{\rm cc}(r\!=\!0)=\psi^{(\Lambda)}(r\!=\!0)$$

|lsoscalar T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

Coupled-channel wavefunction

$$\psi_{\rm cc}^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda+\gamma)\Lambda\gamma}}{\Lambda-\gamma_{cc}} \left(\frac{1}{k^2+\gamma_{\rm cc}^2} - \frac{1}{k^2+\Lambda^2}\right)$$
$$\gamma_{\rm cc} = \sqrt{2\mu(\delta+|\varepsilon|)}$$

Coupled-channel model for a loosely bound molecule with two channels related by symmetry $\psi_{cc}^{(\Lambda)}(r=0) = \psi^{(\Lambda)}(r=0)$

 \bigcirc

 \sim

Relative probability for the coupled-channel wavefunction

$$Z_{\rm cc} \equiv \int \frac{d^3k}{(2\pi)^3} \left|\psi_{\rm cc}^{(\Lambda)}(k)\right|^2 = \frac{(\Lambda + \gamma)\gamma}{(\Lambda + \gamma_{\rm cc})\gamma_{\rm cc}}$$

 $\Lambda = m_{\pi}/2$, m_{π} , $2m_{\pi}$, $Z_{0+} = 0.34$, 0.38, 0.41, respectively.

Isoscalar T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

"Feynman rules" : smooth cutoff + coupled channel

V

D

 $\sqrt{D^{*+}D^0}$ configuration, D^0 propagator replacement

1	, 1	$\sqrt{(\Lambda+\gamma)\Lambda}$	$\begin{pmatrix} 1 \end{pmatrix}$	1
$\overline{k^2 + \gamma^2}$	$\overrightarrow{\sqrt{1+Z_{0+}}}$	$\overline{\Lambda - \gamma}$	$\left(\overline{k^2+\gamma^2}\right)$	$-\overline{k^2+\Lambda^2}$

 $\mathcal{D}^{*0}D^+$ configuration, D^+ propagator replacement

1	\ \	1	$\sqrt{(\Lambda + \gamma)\Lambda}$	(1	1
$\overline{k^2 + \gamma_{0+}^2}$	\rightarrow –	$\overline{\sqrt{1+Z_{0+}}}$	$\Lambda - \gamma_{0+}$	$\left(\frac{1}{k^2 + \gamma_{0+}^2}\right)^2 = -\frac{1}{k^2 + \gamma_{0+}^2}$	$\overline{k^2 + \Lambda^2}$

Isoscalar T_{cc}^+ : $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

"Feynman rules" : smooth cutoff + coupled channel

 $\sqrt{D^{*+}D^0}$ configuration, D^0 propagator replacement

1	, 1	$\sqrt{(\Lambda+\gamma)\Lambda}$	$\begin{pmatrix} 1 \end{pmatrix}$	1
$\overline{k^2 + \gamma^2}$	$\overline{} \overline{\sqrt{1+Z_{0+}}}$	$\Lambda - \gamma$	$\left(\overline{k^2 + \gamma^2}\right)$	$-\overline{k^2+\Lambda^2}$

 $\mathcal{D}^{*0}D^+$ configuration, D^+ propagator replacement

1	,	1	$\sqrt{(\Lambda + \gamma)\Lambda}$	(1	1
$\overline{k^2 + \gamma_{0+}^2}$	\rightarrow -	$-\overline{\sqrt{1+Z_{0+}}}$	$\Lambda - \gamma_{0+}$	$\left(\overline{k^2 + \gamma_{0+}^2}\right)$	$-\overline{k^2+\Lambda^2}$

Same vertices for $D^{*+}D^0 - T_{cc}^+$ and $D^{*0}D^+ - T_{cc}^+$

4 Summary & Discussion

Discussion

SPS vs DPS

 \checkmark

Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of T^+_{cc} .

 \bigcirc

4 Summary & Discussion

Discussion

SPS vs DPS

 \checkmark

 $\langle \sqrt{} \rangle$

Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of T^+_{cc} .

 \bigcirc

 \bigcirc

In double-parton scattering (DPS), the charm mesons maybe created at distances comparable to the radius of a proton ($\sim 1 fm$).

4 Summary & Discussion

Discussion

SPS vs DPS

 $\sqrt{}$

 \sim

Calculation based on assumption that charm mesons are created at short distances much smaller than the mean radius $(3.7 \pm 0.2 fm)$ of T^+_{cc} .

In double-parton scattering (DPS), the charm mesons maybe created at distances comparable to the radius of a proton ($\sim 1 fm$).

Single-parton scattering (SPS) makes the triangle-singularity peak stand out more clearly above the background.

LHCb, Nature Commun. 13, 3351 (2022)