Probing electromagnetic fields with heavy quarks and Z^0 decaying leptons in uRHICs

Yifeng Sun

sunyfphy@sjtu.edu.cn

Shanghai Jiao Tong University

Collaborators:

S. Plumari and V. Greco

Refs: PLB 816, 136271 (2021); EPJP 136, 726 (2021)

□ Impact of e.m. fields in uRHICs

Probing e.m. fields with v₁ splitting of heavy quarks and leptons from Z⁰ decay

□ The general behavior of charge dependent flows induced by e.m. fields

G Summary

Impact of electromagnetic (e.m.) fields in uRHICs

Many Impacts: Chiral magnetic effect (CME), Chiral magnetic wave (CMW), Hyperons polarization splitting, Chiral condensate, Fluctuation of conserved charge and so on

D.E. Kharzeev et al., NPA 803 (2008) Y. Burnier et al., PRL 107 (2011), 052303 STAR, Nature 548 (2017), 62-65 H.T. Ding et al., PRD 105 (2022), 034514 J.H. Liu, QM 2022

Probing e.m. fields with v_1 splitting of heavy quarks and leptons from Z⁰ decay

Probing e.m. fields with v_1 splitting of charged particles

U. Gursoy et al., PRC 89 (2014), 054905 S.K. Das et al., PLB 768 (2017), 260-264

$$F_{ext} = q\mathbf{E} + \frac{q}{E_p} (\mathbf{p} \times \mathbf{B})$$

Faraday Hall
(decaying B)
$$\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t$$

Delicate balance between E and B

- \checkmark E wins -> negative slope $\varDelta v_1$ vs y_z between positively and negatively charged particles
- ✓ B wins -> positive slope $\Delta v_1 v_5 y_z$

Why heavy Quarks (HQs)?

HQs best probe for v₁ induced by e.m. fields:

- 1. pQCD hard processes
- 2. negligible thermal production
- 3. $t_{form} \approx 0.08$ fm/c when B_y is \approx its maximum and witness of all the QGP evolution
- 4. $\tau_{th}(c) \approx \tau_{QGP} \gg \tau_{e.m}$ (keep more memory effects)

E.M. fields

≈ 50m_π²

10

10

0

10

10

10

eB_y [GeV/fm]

$$\left(\nabla^2 - \partial_t^2 - \sigma_{el} \, \partial_t \right) \boldsymbol{B} = -\nabla \times \boldsymbol{J}_{ext}, \left(\nabla^2 - \partial_t^2 - \sigma_{el} \, \partial_t \right) \boldsymbol{E} = -\nabla \rho_{ext} + \partial_t \boldsymbol{J}_{ext},$$

U. Gursoy et al., PRC 89 (2014), 054905 H. Li et al., PRC 94 (2016), 044903

Assuming constant conductivity gives an analytical and simple solution of the Maxwell equations

S. Shi et al., AP 394 (2018), 50-72 L. Mclerran et al., NPA 929 (2014) 184 G. Inghirami et al., EPJC 76 (2016), 659

* Computation of early stage e.m. field is quite an issue:

- ✓ large gap @LHC: $eB_y(t=0)$ in the vacuum: ≈ 50 m_π² but $eB_y(t=0)=0$ assuming a medium in equilibrium at σ_{el} even before t=0 (need more realistic simulations)
- ✓ IQCD σ_{el} ? Early time what is σ_{el} in the Glasma?

Parametrized E.M. field

Sun&Plumari&Greco, PLB 816 (2021), 136271

Case A

 ✓ E-B fields like U. Gursoy et al., PRC 89 (2014), 054905
 ✓ Medium at t<0 + eq. medium $σ_{el}$ =0.023 fm⁻¹

F

Case B and C

 $eB_{y}(x, y, \tau) = -B(\tau)\rho_B(x, y) \quad B(\tau) = eB_0/(1 + (\tau/\tau_B)^a)$

 $B(\tau) = eB_0/(1 + \tau^2/\tau_B^2)$ $B(\tau) = eB_0/(1 + \tau/\tau_B)$

- \checkmark ~~ E_x is evaluated by the Faraday's Law
- * <u>Case C</u> reproduces experimental data:
 - ✓ Case B and Case C have the same τ_B and eB_0 but very different v_1 splitting
 - Constrain strongly the decay form of B_y(t): A slowly decay
 B leads to a relative smaller E, and B (Hall effect) wins over

Leptons from Z⁰ decay

- ✓ Clearer observables
- ✓ Separable from other sources
- ✓ $\tau_{decay}(Z^0) = \tau_{form}(charm) = 0.08 \text{ fm/c} \rightarrow \text{ Strong}$ correlation between $\Delta v_1(D^0, \overline{D}^0)$ and $\Delta v_1(I^+, I^-)$

- v₁ splitting of Z⁰ decaying leptons **are quite different from** that of charm quarks:
 - ✓ Sign change?
 - Smaller magnitude (1e > 2/3e)?

$$\frac{d\Delta v_1^c}{dy_z}|_{y_z=0} \propto -\alpha \frac{\partial \ln f_c}{\partial p_T}$$

The relation between v_1 and charged particle's spectra

The general behavior of charge dependent flows induced by e.m. fields

General behavior of charge dependent flows by e.m. fields

□ What happens to **all** charge dependent flows by e.m. fields? Is there a general behavior? Does it depend on the details of e.m. fields?

- The interaction with QGP just dampens the effect at p_T<3 GeV/c</p>
 - One can study the charge dependent flows with pure e.m. fields for heavy quarks and jets and leptons

General behavior of charge dependent flows by e.m. fields

$$\begin{aligned} f' &= f - \left\{ \frac{\partial f(a_1 + b_1)}{\partial p_T} + f(-\frac{p_T}{m_T^2} \frac{\partial (a_1 + b_1) \tanh y_z}{\partial y_z} \right. \\ &+ \frac{a_1 + b_1}{p_T} + \frac{2}{m_T} \frac{\partial c_0 / \cosh y_z}{\partial y_z} \right) \right\} \\ &- \left\{ -f \frac{p_T}{m_T^2} \frac{\partial (a_0 + b_0) \tanh y_z}{\partial y_z} + \frac{\partial (a_0 + b_0) f}{\partial p_T} \right\} \cos \phi \\ &- \sum_{n=1} \left\{ \frac{\partial f(a_{n+1} + b_{n+1} + a_{n-1} - b_{n-1})}{\partial p_T} \right. \\ &+ f\left[\frac{(n+1)(a_{n+1} + b_{n+1}) - (n-1)(a_{n-1} - b_{n-1})}{p_T} \right. \\ &- \frac{p_T}{m_T^2} \frac{\partial \tanh y_z(a_{n+1} + b_{n+1} + a_{n-1} - b_{n-1})}{\partial y_z} \\ &+ \frac{2}{m_T} \frac{\partial c_n / \cosh y_z}{\partial y_z} \right] \right\} \cos n\phi. \end{aligned}$$

$$(7)$$

$$\overline{\Delta p_x} = \sum 2a_n(p_T, y_z) \cos n\phi, \\ \overline{\Delta p_y} = \sum 2b_n(p_T, y_z) \sin n\phi, \\ \overline{\Delta p_y} = \sum 2c_n(p_T, y_z) \cos n\phi. \end{aligned}$$

- E.M. fields modify spectra and charge dependent flow
- ✓ The Lorentz force in z direction also modifies charge dependent flows as a azimuthal angle of transverse momentum
 - The trajectory and the Lorentz force are same for quarks with p_T>>m
 - \checkmark p_T dependence is general and simple

$$\frac{\partial a_n}{\partial p_T} \simeq 0, \frac{\partial b_n}{\partial p_T} \simeq 0, \frac{\partial c_n}{\partial p_T} \simeq 0 (p_T \gg m)$$
$$f^{'} = f - \sum_{n=0} (d_n \frac{\partial f}{\partial p_T} + e_n \frac{f}{p_T}) \cos n\phi \quad (p_T \gg m)$$

nφ. Sun&Greco &Plumari, EPJP 136 (2021), 726

Spectra modification by e.m. fields

v₁ splitting by e.m. fields

✓ The v₁ splitting by e.m. fields for charm, bottom and Z⁰ decaying leptons has a general p_T dependence

✓ low p_T derivation for charm quarks due to QGP interaction

v₁ splitting by e.m. fields

✓ p_T dependence of $d\Delta v_1$ /dy applies to **different e.m. fields (Case A and Case C)**

Relation between α and B_v

Correlation between v_1 splitting of $D^0-\overline{D}{}^0$ and I^+-I^- from Z^0 decay

Sun&Greco & Plumari, EPJP 136 (2021), 726

- ✓ α ratio for Case A with conductivity 0.0115, 0.023 fm⁻¹ ~1.3-1.4, for Case C ~ 2, close to their charge ratio 1.5 for very different e.m. fields: 100 times
- ✓ Does not depend on the details of e.m. fields due to same e.m. fields + similar formation time 0.08 fm/c + same space of charm and these leptons
- ✓ Should apply to all charge dependent flows + spectra ratio (a_n, b_n, c_n)

- \Box v₁ splitting can only probe tB_y varation at two times
- \Box Charge dependent flows and spectra modification induced by e.m. fields has a general p_T dependence
- □ The correlation between charge dependent flow of charmed mesons and leptons from Z⁰ decay applies to all e.m. fields; strong indication of e.m. field origin

Thank you for your attention!