JadePix-3 Monolithic Pixel Sensor Telescope

The DAQ system Development and Recent Measurement

Sheng Dong on behalf of the JadePix-3 beam telescope crew

Yunpeng Lu, Hulin Wang (CCNU), Yang Zhou, Jing Dong, Jia Zhou, Hongyu Zhang, Mingyi Dong, Qun Ouyang

12 1 2 1V W W Qu I VI OU L Institute of High Energy Physics Chinese Academy of Sciences

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会(2022)

报告内容

- 硅像素芯片束流望远镜基本背景和研究动机
- 基于JadePix-3的束流望远镜研究
 - 单芯片性能测试
 - 束流望远镜搭建
 - 宇宙线测试
- 总结及展望

東流望远镜背景

- 对探测器性能进行测试和刻度方法:实验束(Test Beam) + 束流望远镜系统(Beam Telescope)
- 可测参数包括位置分辨率、时间分辨率、探测效率等
- 硅像素探测器因其耐辐照、高分辨率、高信噪比、低物质量等优点开始被大量应用于束流望远镜中
- EUDET-type(Mimosa26/ALPIDE based)是目前最先进和被广泛使用的束流望远镜类型

EUDET-type Beam Telscope(MIMOSA26 Based), Ref:arXiv:1603.09669

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

Test Beam and Beam Telescope @DESY II Ref: BTTB10 "EUDET-Type Beam Telescopes and Beyond"

東流望远镜主要参数和研究目标

- 径迹分辨率: 由望远镜系统层数、每层分辨率、层间距、单层物质量决定
- 灵敏区面积:即各层灵敏区重叠区域,最好匹配Test Beam束斑大小和DUT面积
- 探测效率: 在束流望远镜每层都产生有效事例所占比例
- 噪声: 影响径迹重建复杂度, 需合理配置每层组的阈值来平衡探测效率和噪声率间的关 系

测器间的正向迭代,以满足越来越高的粒子物理实验探测器需求。

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

采用硅像素探测器构建束流望远镜来研究硅像素探测器关键性能,实现束流望远镜和硅像素探

束流望远镜研发时间线

JadePix-3

JadePix-3是基于CEPC实验需求研 发的顶点探测器原型设计,其主要 研究高位置分辨的设计实现, 其特 点如下:

- TowerJazz 180nm CMOS Technology
- Sensor Size: $10.4 \times 6.1 mm^2$
- Minimal Pixel Size: $16 \times 23.11 um^2$
- Pixel array: 512×192

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

CEPC 顶点探测器结构图

 Sector 0	
Sector 1	
Sector 2	
Sector 3	

芯片布局,4个Sector分别研究不同前端/数字/layout电路特性

CEPC Tracking System

顶点探测器需要满足以下要求:

- 最内层硅像素探测器的空间分辨好 1. 于3 um
- 每层的物质的量小于 0.15%Xo 2.
- 探测器和电子学的功耗不超过50 3. mW/cm2
- 探测器的占有率不超过1% 4.

JadePix3主要技术指标

与ALPIDE相比:

- 1.空间分辨率进一步提高
 - 单像素面积为ALPIDE的一半
 - 代价是牺牲Time stamp granularity
- 2.平均功耗要尽量接近ALPIDE的水平
 - 像素减小,单位面积的通道数增加一倍
- 3·抗辐照能力要接近ALPIDE的水平
 - 同一个CMOS工艺,采用相同的抗辐照增强手段
 - 但是对辐照损伤机制的理解和经验还存在差距

Ref: CMOS像素芯片JadePix3的性能测试-第十三届全国粒子物理学术会议-卢云鹏

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

	ALICE-ITS / ALPIDE	JadePix3
空间分辨率 (μm)	5	3
芯片减薄 (µm)	50	目标: 50
平均功耗(mW/cm²)	<50	<100
Time stamp granularity (µs)	10	<100
抗辐照 TID NIEL	1 Mrad/ year , 10 ¹² n _{eq} / (cm² year))	目标:1 Mrac year, 10 ¹² n _{eq} /(cm year))

JadePix-3 Test Setup

1. 芯片测试子板 (7块)

- 所有子板通过功能测试

2. 测试平台在多家合作单位部署运行

- IHEP, CCNU, JLU, USTC

3. 设计了新的连接子板用于搭建Beam Telescope

- 搭建5层Telescope Plane,并通过所有功能 测试

New adaptor

The sigle telescope plane

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

JadePix-3芯片绑定@ccnu

芯片绑定成品

单芯片测试系统框架

电脉冲和宇宙线测试平台@ccnu

激光测试平台@ihep

JadePix3位置分辨率测试

束流测试

•Random hit position on the full matrix

One hit per particle

Reconstructed reference position by beam telescope

 σ of residual = measured - reference

Cluster size can be adjusted by threshold tuning

Yi Liu, et al., "Test of a fine pitch SOI pixel detector with laser beam", Chinese Physics C Vol. 40, No. 1 (2016) 016202

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 Sheng Dong | 2022.08.00

激光测试

•Well controlled scan of laser position on a single pixel

One hit per laser pulse

•Reference position given by the 3-D motion stage

 σ of residual = measured - reference

•Cluster size can be adjusted by threshold tuning and laser power tuning

- 波长: 1064nm
- 束腰半径: 1.8um
- 三维控制平台步进电机精度: 1um
- 激光脉冲时长: ~100ps

- ・发散角度: θ ~ 11°
- 瑞利长度: 8.5um
- 光强可调,测试中调节范围从440e⁻(2倍阈 值)到880e⁻(4倍阈值)

JadePix3位置分辨率测试结果

- 像素X/Y方向均可达到理论上最小分辨率
- 单点分辨率沿X方向从约3.4微米增加到6.2微米, 而沿Y方向从约4.4微米减少到2.7微米。

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

阈值设置为220e⁻;调节激光Z轴寻找束腰;X/Y扫描寻找像素中心;调节激光强度测量Cluster Size变化

JadePix-3 Based Telescope Prototype

采用3层JadePix-3芯片构建束流望远镜原型

与芯片测试系统相比:

每层组(Plane) 依旧由KC705 + FMC Adaptor + JadePix3组成 增加了时钟扇出模块,同步信号传递

Telescope DAQ Design

- 基于IPBus实现分布式控制和读出系 统设计
- ▶ 在标准IPbus框架下集成巨帧模式传 输,提升传输带宽,从450Mbps提 升至750Mbps
- ▶ 商用Si5338扇出 3路同步差分时 钟为每个Plane 提供200MHz系 统时钟

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

Table 1: JadeTelescope Connection Map

Plane	Adapter	JadePix-3	IP address	IPbus Device Id	Master/Slave
0	#9	#10	192.168.3.18	JadePix3.chtcp.0	Master
1	#4	#5	192.168.3.19	JadePix3.chtcp.1	Slave
2	#10	#12	192.168.3.20	JadePix3.chtcp.2	Slave

每层组 (Plane) 组成配置

Telescope DAQ Design

无触发系统

- ▶ 每层Plane单独配置为Master或Slave
- ▶ 同步读出信号由Master产生并通过菊花链形式传递给Slave

• Rolling shutter 96,000,000 frames, 160 minutes

- Hit rate = -

束流望远镜宇宙线测试

- ▶约每2.5小时可以找到一个穿越3层plane的 Track
 - 是宇宙射线,可能有些hit来自空间辐射

 - 作

总结及展望

总结

- 1. JadePix-3性能参数(高位置分辨、低功耗、低物质量)适于构建束流望远镜系统
- 控制系统(低压电源、子板DAC)
- 展望: 从原型设计到成熟设计
 - 1. 束流望远镜本身性能刻度,包括不同层组数量的空间分辨率
 - 2. 径迹重建软件集成(EUTelescope)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

2·基于JadePix-3设计了EUDET类型的束流望远镜原型(3层结构),包括其数据获取系统,部分慢

3. 辅助系统实现,包括在线监控(Online- Monitor)、慢控制系统(Slow Control)、触发系统

谢谢!

阈值校准(S-Curve Scan)

Sector 2测试结果: 平均阈值228 e^- , 平均瞬态噪声4 e^- , 阈值不一致性8 e^- ITHR/VCASN影响也已测试验证。

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

Temporal Noise Distribution

噪声击中率

- 研究两种读出模式下(Rolling shutter/Global shuttle)噪声击中差异,测试结果表明差异极小,可忽略。
- 对于Sector 0/1/2和Sector 3,当阈值分别大 于120e⁻和90e⁻时,噪声击中率低于 10⁻⁸/frame/pixel,设计上的差异为Sector 0/1/2为低电流版本,Sector3为高电流版本

Noise Hit Rate

90Sr放射源测试

300秒Hitmap数据

法寻找Cluster。

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 | Sheng Dong | 2022.08.09

Cluster Size 随阈值变化

阈值越高,平均Cluster Size越小。低能电子扩散会产生较大的Cluster Size。

采用DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算

Backup (TH/FPN/TNvsITHR)

Backup (TH/FPN/TNvsVCASN)

