The Development of 4H-SiC Detector for Fast Minimum **Ionization Particle Detection**

Tao Yang¹, Qing Liu², Xiyuan Zhang¹, Congcong Wang¹, Hai Lu², Xin Shi¹ ¹Institute of High Energy Physics, CAS, ²Nanjing University

Benefits of 4H-SiC material

Characteristic	Si	4H-SiC
Eg (eV)	1.12	3.26
Thermal conductivity	1.5	4.9
E _{breakdown} (V/cm)	0.5	3
Saturated electron velocity (cm/s)	1×10 ⁷	2×10 ⁷
ionization energy for e-h pair (eV)	3.64	7.8
displacement energy	13	21.8

- **High radiation hardness**
- Low dark current
- Work on high temperature
- High saturated carrier velocity
- High energy resolution

4H-SiC Detector could be	
applied to fast MIPs detection in	
high radiation environment	
without cooling system	

Good time resolution of 4H-SiC detector

Present studies about different 4H-SiC detectors indicate the 4H-SiC detectors have good time resolution at room temperature. Such as $\sigma_T < 100$ ps for 4H-SiC PIN and $\sigma_T < 30$ ps for 3D 4H-SiC detector.

100 µm 4H-SiC PIN for MIPs (measurement)

3D 4H-SiC Detector for MIPs (simulation)

The 4H-SiC Low Gain Avalanche Diode Concept

- Background: The Silicon Low Gain Avalanche Diode (LGAD) has \geq been verified to have excellent time performance. Therefore, the 4H-SiC LGAD is introduced for application to detect the MIPs.
- Motivation: find the electric field range to achieve low gain avalanche \succ in 4H-SiC material and obtain an excellent time resolution at room temperature.
- Application: room temperature, $> 10^{16} n_{eq}/cm^2$ NIEL radiation and \geq fast MIPs detection $\sigma_{\rm T}$ < 30 ps.

Simulated MIP signal from 4H-SiC LGAD & PIN

Higher signal amplitude with higher S/N of 4H-SiC LGAD than PIN.

The NJU 4H-SiC Low Gain Avalanche Diode

The NJU 4H-SiC LGAD is fabricated by Nanjing University which has 20 µm \succ absorbing layer and 0.5 µm gain layer. The electric field is about 2e6 V/cm ~ 3e6 V/cm in gain layer.

- **Process technology compare for Si & 4H-SiC LGAD:** \geq
- Process of gain layer: epitaxial growing gain layer and higher doping 1. concentration are adopted in 4H-SiC LGAD.

Termination: bevel Edge Termination is adopted in 4H-SiC LGAD to 2. suppress premature breakdown caused by edge effects.

Key technologies of 4H-SiC LGAD :

- High quality and low doping 4H-SiC

Charge Collection Measurement

To determine the gain factor, the collected charges of 4H-SiC LGAD and PIN \geq from α particles are measured. High gain signals are observed and The highest gain is about 5 from dispersed gain signal distribution.

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022