

Latest results of a monolithic active pixel sensor prototype for the CEPC vertex detector

Tianya Wu^{a,b}, Wei Wang^{a,b*}, Zhijun Liang^{a,b}, Ying Zhang^{a,b}, Wei Wei^{a,b}, Joao Guimaraes da Costa^a ^a Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing, China ^b State Key Laboratory of Particle Detection and Electronics, Beijing, 100049, China <u>*wangw@ihep.ac.cn</u>, <u>wei.wang@cern.ch</u>

A Monolithic Active Pixel Sensor (MAPS) prototype, called TaichuPix, based on a data-driven structure and a column drain readout architecture, has been designed for the Circular Electron Positron Collider (CEPC) vertex detector.

- High resolution, low material, fast readout and low power
- Latest results of radioactive source test on TaichuPix
- First verification of the spatial resolution with an infrared laser beam

Fig. 1 Cross section(a), top view(b), RESET schematic(c) and four adjacent pixels (d) of TaichuPix2.

Spatial resolution verification with infrared laser beam

Fig. 7 3-D translation stage with laser diode

Set up:

- 1064 nm laser diode, efficient spot size of $1^{4} \mu m$
 - 3-D translation stage with movement of 1µm
- Scans with 200 µm random lines on the chip

Long one-bit register chain implemented for masking noisy pixels

Fully functional characterization with a radioactive source

Fig. 2 A Setup of the beta source(including a DC power supply, KC705 FPGA Kit, wire bonding board, etc.)

HIT vs. ITHR under Sr.90 source

Set up:

- Chip size: 5x5mm²
- Pixel size: $25x25\mu m^2$
- Taichupix2 chip includes a matrix of 192×64
- Beta source: Strontium-90, 54MBq(\pm 15%); disk source;5e6 nps (\pm 50%);

Fig. 3 A hit map with a shielding "CEPC" region

- > ITHR is an 8-bit register, the larger value of ITHR leads to a higher threshold.
- > A landau distribution was obtained after differentiating the fit curve.
- \succ To several pixels, the output of the pre-amplifier can be measured, and the peaking time of waveforms is less than 500 ns.
- \succ The timewalk distribution shows a value of 60 ns~ 80 ns.

• Measured resolutions are 6.13 ± 0.2 for X

and 5.98 \pm 0.19 for Y

Fig. 10 Observed and expected X w.r.t the stage movement(a). Residual X (b) and Residual Y (c) with Gaussian fit applied.

0.1 Time(s) Fig. 5 Response of a pixel to electrons from a ⁹⁰Sr source, measured by an oscilloscope.

Summary and Outlook

This poster presents the latest charge collection performance of TaichuPix2 by using a radioactive source. A 3-D translation stage with an infrared laser system was used to verify the spatial resolution, which indicates a spatial resolution of approximately 6 μ m. A further optimized prototype, TaichuPix3, is ready for the test. More results will be obtained with these setups soon.

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022.08.08 - 2022.08.11

(a)