Renormalization of the flavor-singlet axial-vector current and its anomaly in dimensional regularization

陈龙

山东大学物理学院

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022 年 8 月 11 日

In collaboration with T. Ahmed and M. Czakon, Based on: [LC, M.Czakon 2201.01797, 2112.03795] [T.Ahmed, LC, M.Czakon 2101.09479]

The Adler-Bell-Jackiw anomaly

The anomalous axial-vector divergence equation [Adler 69; Bell, Jackiw 69]

$$\partial_{\mu}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi = 2m_{f}\bar{\psi}i\gamma_{5}\psi - \frac{\alpha}{4\pi}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}.$$

Diagrammatically,

The Adler-Bardeen theorem [Adler, Bardeen 69]: "one-loop" exact

The intriguing axial anomaly in QFT

• Gauge/internal anomalies must cancel !

- The Standard Model is anomaly free
- Constraints on gauge couplings of New particles
- ► Anomaly matching ['t Hooft et al. 80], Spontaneous chiral symmetry breaking ...

• Global/external anomalies are allowed and important

- $\pi
 ightarrow \gamma \gamma$ decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]
- $U(\mathbf{1})_A/\eta'$ problem [Weinberg 75; 't Hooft 76]
- ► Strong CP problem and Axion [Peccei, Quinn 77] ...

• Practical applications of renormalization of anomalous $\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$

- Treatment of the singlet axial-current operator in heavy-top EFT [Chetyrkin, Kühn 91 93; LC, Czakon, Niggetiedt 21]
- Structure of the non-decoupling heavy-quark-mass logarithms [Collins, Wilczek, Zee 78; Chetyrkin, Kühn 93; LC, Czakon 22]
- Polarized structure and splitting functions [Matiounine, Smith, Neerven; Moch, Vermaseren, Vogt; Blümlein, Marquard, Schneider, Schönwald; Tarasov, Venugopalan...]

►

Calculating the axial anomaly in DR

$$\gamma_5=i\gamma^{\scriptscriptstyle 0}\,\gamma^{\scriptscriptstyle 1}\,\gamma^{\scriptscriptstyle 2}\,\gamma^{\scriptscriptstyle 3}$$

is intrinsically a D = 4 dimensional object.

The axial anomaly

"vanishes" with translational invariant loop integrals and an anticommuting γ_5 .

Within the Dimensional Regularization, two classes of γ_5 prescriptions:

- A non-anticommuting γ₅ (constructively given) ['t Hooft,Veltman 72; Breitenlohner,Maison 77; Larin,Vermaseren 91...]
- An anticommuting γ_5 (with a careful re-definition of " γ_5 -trace") [Bardeen 72, Chanowitz et al. 79; Kreimer 90; Zerf 20 ...]

The γ_5 prescription in use

The HV/BM $_{\rm [72,79]}$ prescription of γ_5 in dimensional regularization:

$$\begin{split} \gamma_5 &= \frac{i}{4!} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \\ \gamma_{\mu} \gamma_5 &\to \frac{1}{2} \left(\gamma_{\mu} \gamma_5 - \gamma_5 \gamma_{\mu} \right) \\ &= \frac{i}{6} \varepsilon_{\mu\nu\rho\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \,, \end{split}$$

where the $e^{\mu\nu\rho\sigma}$ is treated outside the *R*-operation formally in D dimensions [Larin, Vermaseren 91; Zijlstra, Neerven 92] (Larin's prescription).

The properly renormalized singlet axial current reads

$$\begin{bmatrix} J_5^{\mu} \end{bmatrix}_R = Z_J \, \bar{\psi}_B \, \gamma^{\mu} \gamma_5 \, \psi_B$$

= $Z_5^f Z_5^{ms} \, \bar{\psi}_B \, \frac{-i}{3!} \epsilon^{\mu\nu\rho\sigma} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \, \psi_B$

Operator mixing under renormalization

The all-order axial-anomaly equation [Adler 69; Adler, Bardeen 69]

$$\left[\partial_{\mu}J_{5}^{\mu}\right]_{R}=a_{s}\,n_{f}\,\mathrm{T}_{F}\left[F\tilde{F}\right]_{R}$$

in terms of renormalized local composite operators with $F\tilde{F} \equiv -\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\rho\sigma}$ in QCD with n_f massless quarks.

 The renormalization of the operators involved: [Adler 69; Espriu, Tarrach 82; Breitenlohner, Maison, Stelle 84; Bos 92; Larin 93...]

$$\begin{pmatrix} \begin{bmatrix} \partial_{\mu} J_{5}^{\mu} \end{bmatrix}_{R} \\ \begin{bmatrix} F\tilde{F} \end{bmatrix}_{R} \end{pmatrix} = \begin{pmatrix} Z_{J} & o \\ Z_{FJ} & Z_{F\tilde{F}} \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} \partial_{\mu} J_{5}^{\mu} \end{bmatrix}_{B} \\ \begin{bmatrix} F\tilde{F} \end{bmatrix}_{B} \end{pmatrix}$$

• with the matrix of anomalous dimensions:

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2} \begin{pmatrix} \left[\partial_{\mu}J_5^{\mu}\right]_R \\ \left[F\tilde{F}\right]_R \end{pmatrix} = \begin{pmatrix} \gamma_s & \mathrm{o} \\ \gamma_{FI} & \gamma_{F\tilde{F}} \end{pmatrix} \cdot \begin{pmatrix} \left[\partial_{\mu}J_5^{\mu}\right]_R \\ \left[F\tilde{F}\right]_R \end{pmatrix}$$

Vacuum-Gluon matrix elements

Determine Z_5 via computing the 2-gluon matrix elements of $\left[\partial_{\mu}J_5^{\mu}\right]_R = a_s n_f T_F \left[F\tilde{F}\right]_R$

$$\Gamma_{lhs}^{\mu\mu_1\mu_2}(p_1, p_2) \equiv \int d^4x d^4y \, e^{-ip_1 \cdot x - iq \cdot y} \, \langle \mathbf{o} | \hat{\mathbf{T}} \left[J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] | \mathbf{o} \rangle |_{\text{amp}}$$

Form factor decomposition:

taking into account the odd parity and Bose symmetry w.r.t gluons ($p_1 \leftrightarrow p_2$, $\mu_1 \leftrightarrow \mu_2$).

The zero momentum insertion limit

Evaluating \mathcal{M} at q = o with off-shell gluon momenta $p_1^2 \neq o$:

 $\frac{1}{(6-11D+6D^2-D^3)p_1\cdot p_1} \epsilon_{\mu\mu_1\mu_2p_1} \longrightarrow \frac{-1}{6p_1\cdot p_1} \epsilon_{\mu\mu_1\mu_2p_1} \text{ albeit with indices in } D \text{ [LC 19]}$

- possible IR divergences nullified owing to the IR-rearrangement [Vladimirov 79]
- 4-loop massless propagator-type master integrals available [Smirnov, Tentyukov 10, Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 11]
- gauge-dependent $\mathcal{M} \Longrightarrow$ UV renormalization of gauge parameter ξ !

The non-Abelian Adler-Bardeen theorem

The equality verified to 4-loop in QCD [Ahmed, LC, Czakon 21]:

$$Z_{F\tilde{F}}=Z_{a_s}$$

The ABJ equation in QCD in terms of the bare fields:

$$\left(Z_{J} - n_{f} \operatorname{T}_{F} a_{s} Z_{FJ}\right) \left[\partial_{\mu} J_{5}^{\mu}\right]_{B} = \hat{a}_{s} n_{f} \operatorname{T}_{F} \left[F\tilde{F}\right]_{B}$$

- In an Abelian theory with Pauli-Villar regularization (with an AC γ₅), the coefficient is 1 to all orders [Adler 69; Adler, Bardeen 69]
- The coefficient is not 1 with a NAC γ₅ in DR in QCD, but the LHS current remains *RG-invariant* (albeit in D=4 limit):

$$\gamma_{F\tilde{F}} = -\mu^2 \frac{d \ln a_s}{d\mu^2} = -\beta, \ \gamma_s|_{\epsilon=0} = n_f \operatorname{T}_F a_s \gamma_{FJ}.$$

- An all-order argument of the non-Abelian extension was sketched [Breitenlohner, Maison, Stelle 84];
 A proof is completed only recently [Lüscher, Weisz 21]
- However, $Z_I = Z_5^f Z_5^{ms}$ needs to be computed order by order ... Z_5^f at $\mathcal{O}(a_s^3)$ from 4-loop AVV-amplitude [Ahmed,LC,Czakon 21]

Vacuum-Quark matrix elements

Much more efficient to extract Z_J by using the off-shell Ward-Takahashi identity for an axial current with a non-anticommuting γ_5 [LC,Czakon 21]

The anomalous Ward-Takahashi identity:

 $q_{\mu} \Gamma^{\mu}_{5,s}(p',p) = -a_{s} n_{f} T_{F} \Lambda(p',p) + \gamma_{5} \hat{S}^{-1}(p) + \hat{S}^{-1}(p') \gamma_{5},$

• q can not be 0 to have a non-zero anomaly

- Either p' or p' should be 0 to reduce to the propagator-type integrals
- γ_5 on the RHS does not require any renormalization!

Results for Z_J up to $\mathcal{O}(a_s^5)$

- Results for Z_5^f :
 - $\mathcal{O}(a_s^2)$ from 3-loop AVV-amplitude [Larin 93]
 - ► $O(a_s^3)$ from 4-loop AVV-amplitude [Ahmed,LC,Czakon 21]
 - ▶ $\mathcal{O}(a_s^4)$ from 4-loop off-shell AWI [LC,Czakon 21]
- Results for Z_5^{ms} :
 - ▶ $\mathcal{O}(a_s^3)$ from UV-poles in Zqq-vertex (projected to tree with p = p') [Larin 93]
 - ▶ O(a⁴_s) from 4-loop off-shell AWI [LC,Czakon 21]

 $\mathcal{O}(a_s^4)$ in the calculation of Ellis-Jaffe sum rule [Larin, Ritbergen, Vermaseren 97]

• Z_5^{ms} at $\mathcal{O}(a_s^5)$ using ABJ equation with $Z_{F\tilde{F}} = Z_{a_s}$ [LC, Czakon 22]

$$\gamma_s^{ms} \equiv \frac{\mathrm{d} \ln Z_s^{ms}}{\mathrm{d} \ln \mu^2} = a_s \, n_f \, \mathrm{T}_F \, \gamma_{FJ} \, - \, \beta \, \frac{\mathrm{d} \ln Z_s^f}{\mathrm{d} \ln a_s} \, .$$

- $\gamma_s^{\it ms}$ at $\mathcal{O}(a_s^5)$ requires $\gamma_{\it FJ}$ and Z_s^f up to 4-loop [LC, Gzakon 21, 22]
- Z_5^f at $\mathcal{O}(a_s^5)$ not known yet

Summary and Outlook

- We have described a very efficient way for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have verified explicitly up to 4-loop order $Z_{FF} = Z_{\alpha_s}$ in the $\overline{\text{MS}}$ scheme, from which follows $\gamma_s = a_s n_f T_F \gamma_{FI}$ valid to $\mathcal{O}(\alpha_s^4)$.
- A proof of $Z_{F\tilde{F}} = Z_{\alpha_s}$ in dimensionally regularized QCD to all orders is recently completed [Lüscher, Weisz 21].
- We have extended the result of Z_J of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^4)$, with its $\overline{\text{MS}}$ part to $\mathcal{O}(\alpha_s^5)$ by the virtue of ABJ equation
- Needed for resumming the non-decoupling heavy-quark-mass logarithms and in the calculation of polarized splitting functions at high orders...

Summary and Outlook

- We have described a very efficient way for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have verified explicitly up to 4-loop order $Z_{FF} = Z_{\alpha_s}$ in the $\overline{\text{MS}}$ scheme, from which follows $\gamma_s = a_s n_f T_F \gamma_{FI}$ valid to $\mathcal{O}(\alpha_s^4)$.
- A proof of $Z_{F\tilde{F}} = Z_{\alpha_s}$ in dimensionally regularized QCD to all orders is recently completed [Lüscher, Weisz 21].
- We have extended the result of Z_J of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^4)$, with its $\overline{\text{MS}}$ part to $\mathcal{O}(\alpha_s^5)$ by the virtue of ABJ equation
- Needed for resumming the non-decoupling heavy-quark-mass logarithms and in the calculation of polarized splitting functions at high orders...

谢谢!

Backup Slides

Treatment of the operator $F\tilde{F}$

The axial-anomaly (topological-charge density) operator $F ilde{F}$ with the Chern-Simons current K^μ

$$F\tilde{F} = \partial_{\mu}K^{\mu}$$
$$= \partial_{\mu}\left(-4\epsilon^{\mu\nu\rho\sigma}\left(A^{a}_{\nu}\partial_{\rho}A^{a}_{\sigma} + g_{s}\frac{1}{3}f^{abc}A^{a}_{\nu}A^{b}_{\rho}A^{c}_{\sigma}\right)\right)$$

by the virtue of total antisymmetry of $\epsilon^{\mu\nu\rho\sigma}$ [Bardeen 74]. Unlike J_5^{μ} , the current K^{μ} is not gauge-invariant.

Feynman diagrams

The Work Flow:

- Generating Feynman diagrams DiaGen/IdSolver [Czakon]
- Applying Feynman Rules, Dirac/Lorentz algebra, Color algebra
- ► IBP reduction of loop integrals [Tkachov 81; Chetyrkin, Tkachov 81]
- Inserting Master integrals

Generator Loop order	DiaGen		Qgraf	
	l.h.s.	r.h.s.	l.h.s.	r.h.s.
1	2	3	2	4
2	20	57	21	64
3	429	1361	447	1488
4	11302	37730	11714	40564

IBP reduction and master integrals

Loop integrals in diagrams, reduced by IBP [Tkachov 81; Chetyrkin, Tkachov 81]; Analytic results of *p*-master integrals, up to 4 loop [Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 12].

- DiaGen/IdSolver [Czakon] + Forcer [Ruijl,Ueda,Vermaseren]
 - ▶ Amplitude projection: about 3 + 6 days @ 24 cores (Intel[®] Xeon[®] Silver 4116)
 - ► Forcer (pre-solved IBP): about 12 + 24 hours @ 8 cores (Intel[®] Xeon[®] E3-1275 V2)
- QGRAF [Nogueira] + FORM [Vermaseren] + Reduze 2 [Manteuffel, Studerus] + FIRE [Smirnov] combined with LiteRed [Lee]
 - ▶ IBP (by Laporta): about one month @ 32 cores (Intel[®] Xeon[®] Silver 4216)
 - a few hundred GB RAM

At 4-loop: $\sim 10^5$ loop integrals in Feynman amplitudes reduced to 28 masters.

The analytical results were found to be identical between the two set-ups.

Light quark form factors in the heavy top limit

Appearance of the non-decoupling mt-logarithms [Collins, Wilczek, Zee 78; Chetyrkin, Kühn 93]

$$\begin{split} \left. \mathcal{F}^{A}_{s,b} - \mathcal{F}^{A}_{s,t} \right|_{m_{t} \to \infty} &= \left. \bar{\mathcal{F}}^{\bar{A}}_{s,b}(\bar{a}_{s},\mu) + \bar{\mathcal{F}}^{A_{n}\text{DC}}_{s,b}(\bar{a}_{s},m_{t},\mu) - \bar{\mathcal{F}}^{A}_{s,t}(\bar{a}_{s},m_{t},\mu) \right|_{m_{t} \to \infty} \\ &= \left. \bar{\mathcal{F}}^{\bar{A}}_{s,b}(\bar{a}_{s},\mu) - C_{w}(\bar{a}_{s},\mu/m_{t}) \left(\bar{\mathcal{F}}^{A}_{ms}(\bar{a}_{s},\mu) + \sum_{i=1}^{n_{t}} \bar{\mathcal{F}}^{\bar{A}}_{s,i}(\bar{a}_{s},\mu) \right) + \mathcal{O}(1/m_{t}^{2}) \,. \end{split}$$

The renormalized low-energy effective Lagrangian [Chetyrkin, Kühn 93; LC, Gzakon, Niggetiedt 21]

$$\delta \mathcal{L}_{\text{eff}}^{R} = \left(Z_{ns} \sum_{i=1}^{n_{l}} a_{i} \bar{\psi}_{i}^{B} \gamma^{\mu} \gamma_{5} \psi_{i}^{B} + a_{b} Z_{s} \left[J_{5}^{\mu} \right]_{B} \longrightarrow n_{l} \text{-flavor massless part} \right. \\ \left. + a_{t} C_{w}(a_{s}, \mu/m_{t}) \left(Z_{ns} + n_{l} Z_{s} \right) \left[J_{5}^{\mu} \right]_{B} \right) \mathsf{Z}_{\mu} ,$$

with $J_5^{\mu} = \sum_{i=1}^{n_l} \bar{\psi}_i \gamma^{\mu} \gamma_5 \psi_i$.

Resuming the non-decoupling m_t logarithms

RG equation of the Wilson coefficient $C_w(\bar{a}_s,\mu/m_t)$ [Chetyrkin, Kühn 93; LC, Czakon, Niggetiedt 21]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} C_w(\bar{a}_s, \mu/m_t) = \bar{\gamma}_s - n_l \, \bar{\gamma}_s \, C_w(\bar{a}_s, \mu/m_t) \,,$$

 $\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} [J_{5,q}^{\mu}]_R = \bar{\gamma}_s [J_5^{\mu}]_R \text{ with } J_5^{\mu} = \sum_{i=1}^{n_l} = \bar{\psi}_i \gamma^{\mu} \gamma_5 \psi_i \text{ and } \mu^2 \frac{\mathrm{d}Z_s}{\mathrm{d}\mu^2} = \bar{\gamma}_s (Z_{ns} + n_l Z_s).$

The solution for $C_t \equiv -1/n_l + C_w$

$$\begin{split} \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} C_t(\bar{a}_s, \mu/m_t) &= n_l \, \bar{\gamma}_s \, C_t(\bar{a}_s, \mu/m_t) \,, \\ C_t(\bar{a}_s(\mu), \mu/m_t) &= C_t(\bar{a}_s(m_t), \mathbf{1}) \exp \Big(\int_{\bar{a}_s(m_t)}^{\bar{a}_s(\mu)} \frac{-n_l \, \bar{\gamma}_s(a_s)}{\beta(a_s)} \frac{\mathrm{d}a_s}{a_s} \Big) \,, \end{split}$$

in Larin's scheme.

The solution can also be done by numerically solving the RGE.

From [Baikov, Chetyrkin, Kühn, Rittinger, arXiv:1201.5804]

The decay rate of the *Z*-boson into hadrons in massless QCD up to $\mathcal{O}(\alpha_s^4)$:

$$\begin{split} \Gamma_Z = &\Gamma_0 R^{\rm nc} = \frac{G_F M_Z^3}{24\pi\sqrt{2}} R^{\rm nc} \\ R^{\rm nc} = &20.1945 + 20.1945 \,\alpha_s \\ &+ (28.4587 - 13.0575 + 0) \,\alpha_s^2 \\ &+ (-257.825 - 52.8736 - 2.12068) \,\alpha_s^3 \\ &+ (-1615.17 + 262.656 - 25.5814) \,\alpha_s^4 \,, \end{split}$$

The three terms in the brackets display separately non-singlet, axial singlet and vector singlet contributions.