Renormalization of the flavor－singlet axial－vector current and its anomaly in dimensional regularization

陈龙

山东大学物理学院

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022年8月11日

In collaboration with T．Ahmed and M．Czakon，
Based on：［LC，M．Czakon 2201．01797，2112．03795］
［T．Ahmed，LC，M．Czakon 2101．09479］

The Adler-Bell-Jackiw anomaly

$$
\partial_{\mu} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi=2 m_{f} \bar{\psi} i \gamma_{5} \psi-\frac{\alpha}{4 \pi} \epsilon^{\mu \nu \rho \sigma} F_{\mu v} F_{\rho \sigma} .
$$

Diagrammatically,

The Adler-Bardeen theorem ${ }_{\text {Aderer Badsen }}$ ge : "one-loop" exact

The intriguing axial anomaly in QFT

- Gauge/internal anomalies must cancel!
- The Standard Model is anomaly free
- Constraints on gauge couplings of New particles
- Anomaly matching [t Hooft et al. 80], Spontaneous chiral symmetry breaking ...
- Global/external anomalies are allowed and important
- $\pi \rightarrow \gamma \gamma$ decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]
- $U(\mathbb{1})_{A} / \eta^{\prime}$ problem [Weinberg 75; 't Hooft 76]
- Strong CP problem and Axion [Peccei, Quinn 77] ...
- Practical applications of renormalization of anomalous $\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$
- Treatment of the singlet axial-current operator in heavy-top EFT [Chetyrkin, Kühn 91 93; LC, Czakon, Niggetiedt 21]
- Structure of the non-decoupling heavy-quark-mass logarithms [Collins, Wilczek, Zee 78; Chetyrkin, Kühn 93; LC, Czakon 22]
- Polarized structure and splitting functions [Matiounine, Smith, Neerven; Moch, Vermaseren, Vogt;

Blümlein, Marquard, Schneider, Schönwald; Tarasov, Venugopalan...]

- \qquad

Calculating the axial anomaly in DR

$$
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

is intrinsically a $D=4$ dimensional object.

The axial anomaly

"vanishes" with translational invariant loop integrals and an anticommuting γ_{5}.

Within the Dimensional Regularization, two classes of γ_{5} prescriptions:

- A non-anticommuting γ_{5} (constructively given) ['t Hooft,Veltman 72; Breitenlohner,Maison 77; Larin,Vermaseren 91 ...]
- An anticommuting γ_{5} (with a careful re-definition of " γ_{5}-trace")
[Bardeen 72, Chanowitz et al. 79; Kreimer 90; Zerf 20 ...]

The γ_{5} prescription in use

The HV/BM ${ }_{[72,79]}$ prescription of γ_{5} in dimensional regularization:

$$
\begin{aligned}
\gamma_{5} & =\frac{i}{4!} \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{v} \gamma^{\rho} \gamma^{\sigma} \\
\gamma_{\mu} \gamma_{5} & \rightarrow \frac{1}{2}\left(\gamma_{\mu} \gamma_{5}-\gamma_{5} \gamma_{\mu}\right)=\frac{i}{6} \varepsilon_{\mu \nu \rho \sigma} \gamma^{v} \gamma^{\rho} \gamma^{\sigma},
\end{aligned}
$$

where the $\epsilon^{\mu \nu \rho \sigma}$ is treated outside the R-operation formally in D dimensions [Larin, Vermaseren 91; Zijlstra, Neerven 92] (Larin's prescription).

The properly renormalized singlet axial current reads

$$
\begin{aligned}
{\left[J_{5}^{\mu}\right]_{R} } & =Z_{J} \bar{\psi}_{B} \gamma^{\mu} \gamma_{5} \psi_{B} \\
& =Z_{5}^{f} Z_{5}^{m s} \bar{\psi}_{B} \frac{-i}{3!} \epsilon^{\mu \nu \rho \sigma} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \psi_{B}
\end{aligned}
$$

Operator mixing under renormalization

The all-order axial-anomaly equation [Ader 99 ; Ader, Bardeen 69]

$$
\left[\partial_{\mu} J_{5}^{\mu}\right]_{R}=a_{S} n_{f} \mathrm{~T}_{F}[F \tilde{F}]_{R}
$$

in terms of renormalized local composite operators with $F \tilde{F} \equiv-\epsilon^{\mu v \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}$ in QCD with n_{f} massless quarks.

- The renormalization of the operators involved: [Adler 69; Espriu,Tarrach 82; Breitenlohner,Maison,Stelle 84; Bos 92; Larin 93 ...]

$$
\binom{\left[\partial_{\mu} J_{5}^{\mu}\right]_{R}}{[F \tilde{F}]_{R}}=\left(\begin{array}{cc}
Z_{J} & 0 \\
Z_{F I} & Z_{\tilde{F F}}
\end{array}\right) \cdot\binom{\left[\partial_{\mu} j_{5}^{\mu}\right]_{B}}{[F \tilde{F}]_{B}}
$$

- with the matrix of anomalous dimensions:

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu^{2}}\binom{\left[\partial_{\mu} j_{5}^{\mu}\right]_{R}}{[F \tilde{F}]_{R}}=\left(\begin{array}{cc}
\gamma_{s} & o \\
\gamma_{F J} & \gamma_{F \tilde{F}}
\end{array}\right) \cdot\binom{\left[\partial_{\mu} j_{5}^{\mu}\right]_{R}}{[F \tilde{F}]_{R}}
$$

Vacuum-Gluon matrix elements

Determine Z_{5} via computing the 2-gluon matrix elements of $\left[\partial_{\mu} J_{5}^{\mu}\right]_{R}=a_{S} n_{f} \mathrm{~T}_{F}[F \tilde{F}]_{R}$

$$
\left.\Gamma_{l h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1}, p_{2}\right) \equiv \int d^{4} x d^{4} y e^{-i p_{1} \cdot x-i q \cdot y}\langle\mathrm{o}| \hat{\mathrm{T}}\left[J_{5}^{\mu}(y) A_{a}^{\mu_{1}}(x) A_{a}^{\mu_{2}}(\mathrm{o})\right]|\mathrm{o}\rangle\right|_{\mathrm{amp}}
$$

Form factor decomposition:

$$
\begin{aligned}
\Gamma_{l h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1}, p_{2}\right) & =F_{1} \epsilon^{\mu \mu_{1} \mu_{2}\left(p_{2}-p_{1}\right)} \\
& +F_{2}\left(p_{1}^{\mu_{1}} \epsilon^{\mu \mu_{2} p_{1} p_{2}}-p_{2}^{\mu_{2}} \epsilon^{\mu \mu_{1} p_{1} p_{2}}\right) \\
& +F_{3}\left(p_{1}^{\mu_{2}} \epsilon^{\mu \mu_{1} p_{1} p_{2}}-p_{2}^{\mu_{1}} \epsilon^{\mu \mu_{2} p_{1} p_{2}}\right) \\
q_{\mu} \Gamma_{l h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1}, p_{2}\right) & =2 F_{1} \epsilon^{\mu_{1} \mu_{2} p_{1} p_{2}}
\end{aligned}
$$

taking into account the odd parity and Bose symmetry w.r.t gluons ($p_{1} \leftrightarrow p_{2}, \mu_{1} \leftrightarrow \mu_{2}$).

Evaluating \mathcal{M} at $q=o$ with off-shell gluon momenta $p_{1}^{2} \neq \mathrm{o}$:

$$
\begin{aligned}
& \Gamma_{l h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1},-p_{1}\right)=-2 F_{1} \epsilon^{\mu \mu_{1} \mu_{2} p_{1}} \\
& \mathcal{P}_{\mu \mu_{1} \mu_{2}}=-\frac{1}{6 p_{1} \cdot p_{1}} \epsilon_{\mu \mu_{1} \mu_{2} v} p_{1}^{v} \\
& \text { [Ahmed,LC,Czakon 21] }
\end{aligned}
$$

$\frac{1}{\left(6-11 D+6 D^{2}-D^{3}\right) p_{1} \cdot p_{1}} \epsilon_{\mu \mu_{1} \mu_{2} p_{1}} \longrightarrow \frac{-1}{6 p_{1} \cdot p_{1}} \epsilon_{\mu \mu_{1} \mu_{2} p_{1}}$ albeit with indices in D [LC 19]

- possible IR divergences nullified owing to the IR-rearrangement [Vadimirov 79]
- 4-loop massless propagator-type master integrals available [Smirnov, Tentyukov 10, Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 11]
- gauge-dependent $\mathcal{M} \Longrightarrow$ UV renormalization of gauge parameter ξ !

The non-Abelian Adler-Bardeen theorem
The equality verified to 4-loop in QCD [Ahmed,Lc,Czakon 21]:

$$
Z_{F \tilde{F}}=Z_{a_{s}}
$$

The ABJ equation in QCD in terms of the bare fields:

$$
\left(Z_{J}-n_{f} \mathrm{~T}_{F} a_{S} Z_{F J}\right)\left[\partial_{\mu} J_{5}^{\mu}\right]_{B}=\hat{a}_{S} n_{f} \mathrm{~T}_{F}[F \tilde{F}]_{B}
$$

- In an Abelian theory with Pauli-Villar regularization (with an AC γ_{5}), the coefficient is 1 to all orders [Adler 69; Adler, Bardeen 69]
- The coefficient is not 1 with a NAC γ_{5} in DR in QCD, but the LHS current remains RG-invariant (albeit in $\mathrm{D}=4$ limit):

$$
\gamma_{F \tilde{F}}=-\mu^{2} \frac{\mathrm{~d} \ln a_{s}}{\mathrm{~d} \mu^{2}}=-\beta,\left.\quad \gamma_{s}\right|_{\epsilon=0}=n_{f} \mathrm{~T}_{F} a_{s} \gamma_{F J} .
$$

- An all-order argument of the non-Abelian extension was sketched [Breitenlohner, Maison, Stelle 84]; A proof is completed only recently [Lüscher, Weisz 21]
- However, $Z_{J}=Z_{5}^{f} Z_{5}^{m s}$ needs to be computed order by order ... Z_{5}^{f} at $\mathcal{O}\left(a_{s}^{3}\right)$ from 4-loop $A V V$-amplitude [Ahmed,LC,Czakon 21]

Vacuum-Quark matrix elements

Much more efficient to extract Z_{J} by using the off-shell Ward-Takahashi identity for an axial current with a non-anticommuting γ_{5} [Lc,Czakon 21]

The anomalous Ward-Takahashi identity:

$$
q_{\mu} \Gamma_{5, s}^{\mu}\left(p^{\prime}, p\right)=-a_{S} n_{f} \mathrm{~T}_{F} \Lambda\left(p^{\prime}, p\right)+\gamma_{5} \hat{S}^{-1}(p)+\hat{S}^{-1}\left(p^{\prime}\right) \gamma_{5}
$$

- q can not be 0 to have a non-zero anomaly
- Either p^{\prime} or p^{\prime} should be 0 to reduce to the propagator-type integrals
- γ_{5} on the RHS does not require any renormalization!
- Results for Z_{5}^{f} :
- $\mathcal{O}\left(a_{s}^{2}\right)$ from 3-loop $A V V$-amplitude [Larin 93]
- $\mathcal{O}\left(a_{s}^{3}\right)$ from 4-loop AVV-amplitude [Ahmed,Lc,Czakon 21]
- $\mathcal{O}\left(a_{s}^{4}\right)$ from 4-loop off-shell AWI [Lc,Czakon 21]
- Results for $Z_{5}^{m s}$:
- $\mathcal{O}\left(a_{s}^{3}\right)$ from UV-poles in Zqq-vertex (projected to tree with $p=p^{\prime}$) [Larin 93]
- $\mathcal{O}\left(a_{s}^{4}\right)$ from 4-loop off-shell AWI [Lc,Czakon 21]
$\mathcal{O}\left(a_{s}^{4}\right)$ in the calculation of Ellis-Jaffe sum rule [Larin, Ritbergen, Vermaseren 97]
- $Z_{5}^{m s}$ at $\mathcal{O}\left(a_{s}^{5}\right)$ using ABJ equation with $Z_{F \tilde{F}}=Z_{a_{s}}$ [LC, Czakon 22]

$$
\gamma_{s}^{m s} \equiv \frac{\mathrm{~d} \ln Z_{s}^{m s}}{\mathrm{~d} \ln \mu^{2}}=a_{s} n_{f} \mathrm{~T}_{F} \gamma_{F I}-\beta \frac{\mathrm{d} \ln Z_{s}^{f}}{\mathrm{~d} \ln a_{s}} .
$$

- $\gamma_{s}^{m s}$ at $\mathcal{O}\left(a_{s}^{5}\right)$ requires $\gamma_{F J}$ and Z_{s}^{f} up to 4-loop [LC, Czakon 21, 22]
- Z_{5}^{f} at $\mathcal{O}\left(a_{s}^{5}\right)$ not known yet
- We have described a very efficient way for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_{5} in dimensional regularization.
- We have verified explicitly up to 4-loop order $Z_{F \tilde{F}}=Z_{\alpha_{s}}$ in the $\overline{\text { MS }}$ scheme, from which follows $\gamma_{s}=a_{S} n_{f} \mathrm{~T}_{F} \gamma_{F J}$ valid to $\mathcal{O}\left(\alpha_{s}^{4}\right)$.
- A proof of $Z_{F \tilde{F}}=Z_{\alpha_{s}}$ in dimensionally regularized QCD to all orders is recently completed [Luscher, Weisz 21].
- We have extended the result of Z_{J} of the flavor-singlet axial-vector current to $\mathcal{O}\left(\alpha_{s}^{4}\right)$, with its $\overline{\text { MS }}$ part to $\mathcal{O}\left(\alpha_{s}^{5}\right)$ by the virtue of ABJ equation
- Needed for resumming the non-decoupling heavy-quark-mass logarithms and in the calculation of polarized splitting functions at high orders...
－We have described a very efficient way for computing the renormalization constants of axial－vector currents in QCD with a non－anticommuting γ_{5} in dimensional regularization．
－We have verified explicitly up to 4－loop order $Z_{F \tilde{F}}=Z_{\alpha_{s}}$ in the $\overline{\text { MS }}$ scheme，from which follows $\gamma_{s}=a_{S} n_{f} \mathrm{~T}_{F} \gamma_{F J}$ valid to $\mathcal{O}\left(\alpha_{S}^{4}\right)$ ．
－A proof of $Z_{F \tilde{F}}=Z_{\alpha_{s}}$ in dimensionally regularized QCD to all orders is recently completed［Lüscher，Weisz 21］．
－We have extended the result of Z_{J} of the flavor－singlet axial－vector current to $\mathcal{O}\left(\alpha_{S}^{4}\right)$ ，with its $\overline{\mathrm{MS}}$ part to $\mathcal{O}\left(\alpha_{s}^{5}\right)$ by the virtue of ABJ equation
－Needed for resumming the non－decoupling heavy－quark－mass logarithms and in the calculation of polarized splitting functions at high orders．．．

谢谢！

Backup Slides

Treatment of the operator $F \tilde{F}$
The axial-anomaly (topological-charge density) operator $F \tilde{F}$ with the Chern-Simons current K^{μ}

$$
\begin{aligned}
F \tilde{F} & =\partial_{\mu} K^{\mu} \\
& =\partial_{\mu}\left(-4 \epsilon^{\mu v \rho \sigma}\left(A_{v}^{a} \partial_{\rho} A_{\sigma}^{a}+g_{s} \frac{1}{3} f^{a b c} A_{v}^{a} A_{\rho}^{b} A_{\sigma}^{c}\right)\right)
\end{aligned}
$$

by the virtue of total antisymmetry of $\epsilon^{\mu \nu \rho \sigma}$ [Bardeen 74].
Unlike J_{5}^{μ}, the current K^{μ} is not gauge-invariant.
The Feynman Rules in use:

$$
\begin{aligned}
\Gamma_{r h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1}, p_{2}\right) \equiv & \int d^{4} x d^{4} y e^{-i p_{1} \cdot x-i q \cdot y} \\
& \left.\langle\mathrm{o}| \hat{\mathrm{T}}\left[K^{\mu}(y) A_{a}^{\mu_{1}}(x) A_{a}^{\mu_{2}}(\mathrm{o})\right]|\mathrm{o}\rangle\right|_{\mathrm{amp}} \\
\mathcal{M}_{r h s}= & \mathcal{P}_{\mu \mu_{1} \mu_{2}} \Gamma_{r h s}^{\mu \mu_{1} \mu_{2}}\left(p_{1},-p_{1}\right)
\end{aligned}
$$

Feynman diagrams

The Work Flow:

- Generating Feynman diagrams DiaGen/IdSolver [Czakon]
- Applying Feynman Rules, Dirac/Lorentz algebra, Color algebra
- IBP reduction of loop integrals [Tkachov 81;

Chetyrkin,Tkachov 81]

DiaGen	Qgraf			
	1.h.s.	r.h.s.	1.h.s.	r.h.s.
1	2	3	2	4
2	20	57	21	64
3	429	1361	447	1488
4	11302	37730	11714	40564

- Inserting Master integrals

IBP reduction and master integrals
Loop integrals in diagrams, reduced by IBP [Tkachov 81; Chetyrkin, Tkachov 81];
Analytic results of p-master integrals, up to 4 loop [Baikov, Chetyrkin 10; Lee, Smirnov,Smirnov 12].

- DiaGen/IdSolver ${ }_{[C z a k o n]}+$ Forcer $_{[\text {Ruijl, Ueda,Vermaseren] }}$
- Amplitude projection: about $3+6$ days @ 24 cores (Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Silver 4116)
- Forcer (pre-solved IBP): about $12+24$ hours @ 8 cores (Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ E3-1275 V2)
- QGRAF ${ }_{[\text {Nogueira] }}+$ FORM $_{\text {[Vermaseren] }}+$ Reduze $2_{\text {[Manteuffel, Studerus] }}+$ FIRE $_{\text {[Smirnov] }}$ combined with LiteRed ${ }_{\text {[Lee] }}$
- IBP (by Laporta): about one month @ 32 cores (Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Silver 4216)
- a few hundred GB RAM

At 4-loop: $\sim 10^{5}$ loop integrals in Feynman amplitudes reduced to 28 masters.
The analytical results were found to be identical between the two set-ups.

Light quark form factors in the heavy top limit

Appearance of the non-decoupling m_{t}-logarithms [Collins, Wilczee, Zee 78; Chetyrkin, Kühn 93]

$$
\begin{aligned}
& \overline{\mathcal{F}}_{s, b}^{A, 3}\left(m_{t} \rightarrow \infty\right)=\overline{\mathcal{F}}_{s, b}^{\bar{A}_{, 3}}(\mu)+\overline{\mathcal{F}}_{s, b}^{A_{\mathrm{nDC}, 3}}\left(m_{t}, \mu\right), \\
& =\overline{\mathcal{F}}_{s, b}^{\bar{A}_{, 3}}(\mu)-\frac{85}{9} C_{F}+\frac{4}{3} C_{F} L_{\mu}-\frac{1}{4} C_{F} L_{\mu}^{2}+\mathcal{O}\left(1 / m_{t}^{2}\right)
\end{aligned}
$$

where $L_{\mu} \equiv \ln \frac{\mu^{2}}{m_{t}^{2}}$.
A Wilson coefficient function $C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)$

$$
\begin{aligned}
\mathcal{F}_{s, b}^{A}-\left.\mathcal{F}_{s, t}^{A}\right|_{m_{t} \rightarrow \infty} & =\overline{\mathcal{F}}_{s, b}^{A}\left(\bar{a}_{s}, \mu\right)+\overline{\mathcal{F}}_{s, b}^{A_{n D C}}\left(\bar{a}_{s}, m_{t}, \mu\right)-\left.\overline{\mathcal{F}}_{s, t}^{A}\left(\bar{a}_{s}, m_{t}, \mu\right)\right|_{m_{t} \rightarrow \infty} \\
& =\overline{\mathcal{F}}_{s, b}^{\bar{A}}\left(\bar{a}_{s}, \mu\right)-C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)\left(\overline{\mathcal{F}}_{n s}^{A}\left(\bar{a}_{s}, \mu\right)+\sum_{i=1}^{n_{l}} \overline{\mathcal{F}}_{s, i}^{\bar{A}}\left(\bar{a}_{s}, \mu\right)\right)+\mathcal{O}\left(1 / m_{t}^{2}\right) .
\end{aligned}
$$

The renormalized low-energy effective Lagrangian [Cheyrkin, Künn 93: LC. Czakon. Nggetied 21$]$

$$
\begin{aligned}
\delta \mathcal{L}_{\mathrm{eff}}^{R}= & \left(Z_{n s} \sum_{i=1}^{n_{l}} a_{i} \bar{\psi}_{i}^{B} \gamma^{\mu} \gamma_{5} \psi_{i}^{B}+a_{b} Z_{s}\left[J_{5}^{\mu}\right]_{B} \longrightarrow n_{l}\right. \text {-flavor massless part } \\
& \left.+a_{t} C_{w}\left(a_{s}, \mu / m_{t}\right)\left(Z_{n s}+n_{l} Z_{s}\right)\left[J_{5}^{\mu}\right]_{B}\right) Z_{\mu}
\end{aligned}
$$

with $J_{5}^{\mu}=\sum_{i=1}^{n_{l}} \bar{\psi}_{i} \gamma^{\mu} \gamma_{5} \psi_{i}$.

RG equation of the Wilson coefficient $C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)$ |cheyeyrkin, Kühn 93; LC, Czakon, Niggetied 21]

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)=\bar{\gamma}_{s}-n_{l} \bar{\gamma}_{s} C_{w}\left(\bar{a}_{s}, \mu / m_{t}\right)
$$

$\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}}\left[J_{5, q}^{\mu}\right]_{R}=\bar{\gamma}_{s}\left[J_{5}^{\mu}\right]_{R}$ with $J_{5}^{\mu}=\sum_{i=1}^{n_{l}}=\bar{\psi}_{i} \gamma^{\mu} \gamma_{5} \psi_{i}$ and $\mu^{2} \frac{\mathrm{~d} Z_{s}}{\mathrm{~d} \mu^{2}}=\bar{\gamma}_{s}\left(Z_{n s}+n_{l} Z_{S}\right)$.

The solution for $C_{t} \equiv-1 / n_{l}+C_{w}$

$$
\begin{aligned}
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} C_{t}\left(\bar{a}_{s}, \mu / m_{t}\right) & =n_{l} \bar{\gamma}_{s} C_{t}\left(\bar{a}_{s}, \mu / m_{t}\right), \\
C_{t}\left(\bar{a}_{s}(\mu), \mu / m_{t}\right) & =C_{t}\left(\bar{a}_{s}\left(m_{t}\right), 1\right) \exp \left(\int_{\bar{a}_{s}\left(m_{t}\right)}^{\bar{a}_{s}(\mu)} \frac{-n_{l} \bar{\gamma}_{s}\left(a_{s}\right)}{\beta\left(a_{s}\right)} \frac{\mathrm{d} a_{s}}{a_{s}}\right),
\end{aligned}
$$

in Larin's scheme.
The solution can also be done by numerically solving the RGE.

From [Baikov, Chetyrkin, Kühn, Rittinger, arXiv:1201.5804]

The decay rate of the Z-boson into hadrons in massless QCD up to $\mathcal{O}\left(\alpha_{s}^{4}\right)$:

$$
\begin{aligned}
\Gamma_{Z}= & \Gamma_{0} R^{\mathrm{nc}}=\frac{G_{F} M_{Z}^{3}}{24 \pi \sqrt{2}} R^{\mathrm{nc}} \\
R^{\mathrm{nc}}= & 20.1945+20.1945 \alpha_{s} \\
& +(28.4587-13.0575+\mathrm{o}) \alpha_{s}^{2} \\
& +(-257.825-52.8736-2.12068) \alpha_{s}^{3} \\
& +(-1615.17+262.656-25.5814) \alpha_{s}^{4},
\end{aligned}
$$

The three terms in the brackets display separately non-singlet, axial singlet and vector singlet contributions.

