中国物理学会高能物理分会 HIGH ENERGY PHYSICS BRANCH OF CPS 第十一届全国会员代表大会暨学术年会

J/ ψ azimuthal anisotropy in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR

杨钱(山东大学)

- Motivation
- STAR experiment
- J/ψ elliptic flow measurement
- Summary

J/ψ: a key probe to QGP

 J/ψ is a sensitive probe to study the properties of QGP

- heavy mass (m_c = ~1.5 GeV/c²) → early creation
- long lifetime

Two key observables:

- J/ ψR_{AA} \rightarrow dissociation and regeneration
- J/ ψ v_2 \rightarrow charm quark thermalization and regeneration

Dissociation vs. Regeneration

STAR PLB,797 (2019)134917

- Regeneration effect is prominent at LHC energy
- Is it prominent at RHIC top energy and how is it affected by the collision system size?

J/ψ elliptic flow at RHIC

- J/ψ elliptic flow is consistent with zero but with sizable statistical uncertainties and non-flow contribution in Au+Au measurements
 - Does J/ψ have non zero elliptic flow at RHIC energy?
 - Does it have a system size dependence?
 - Crucial to control non-flow contribution

Isobar collisions

Unique opportunity to measure $J/\psi v_2$ with good precision, and study the system size dependence in isobar collisions ($^{96}_{44}Ru + {}^{96}_{44}Ru$ and ${}^{96}_{40}Zr$ + ${}^{96}_{40}Zr$) at STAR

- A moderate size collision system
 - between Au+Au and Cu+Cu
- Large isobar sample
 - minimum bias (4B)+ high tower triggers
- Event Plane Detector
 - help to reduce non-flow contribution

The Solenoidal Tracker at RHIC

TOF $J/\psi \rightarrow e^+ + e^-$ Identification of $low-p_T$ electrons $(|\eta| < 1, 0 < \varphi < 2\pi)$ **EPD Event-plane reconstruction** $(2.1 < |\eta| < 5.1, 0 < \varphi < 2\pi)$ TPC BEMC Tracking (momentum measurement, Identification of high-p_T electrons particle identification) $(|\eta| < 1, 0 < \varphi < 2\pi)$ $(|\eta| < 1, 0 < \varphi < 2\pi)$

杨钱@第十一届全国会员代表大会暨学术年会,2022年8月11日

J/ψ reconstruction

- Largest J/ψ sample at RHIC to date
 - High precision measurement

 v_2 extraction

Scalar-Product (SP) method:

Large η gap between J/ ψ and EPD \rightarrow limited non-flow contribution to final results

- Crystal-ball function for J/ψ mass distribution
- Polynomial 3 for background mass distribution
- Background v₂: a + b*mass

$$v_2^{S+B}(m_{inv}) = f(m_{inv})v_2^S + [1 - f(m_{inv})]v_2^B(m_{inv})$$
$$f(m_{inv}) = \frac{S(m_{inv})}{S(m_{inv}) + B(m_{inv})}$$

v_2 extraction

TPC Event-Plane (EP) method:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n}cos[n(\phi - \Psi_{n})])$$

TPC second-order event plane to estimate the reaction plane

J/ψ elliptic flow

- $J/\psi v_2$ consistent with zero in both 0-80% and 20-60% centralities
- No significant p_T dependence is seen for $J/\psi v_2$ with current precision

J/ψ elliptic flow

- Improved J/ψ v₂ precision at low-p_T (<4 GeV/c) compare to previous STAR Au+Au results
 - Most precise v₂ measurement to date at RHIC
- The J/ ψ v₂ is consistent with 0 at low-p_T range (0.3< p_T < 4 GeV/c)
 - $v_2 = 0.003 \pm 0.017$ (stat.) ± 0.010 (sys.)
 - Indication of small regeneration effect and/or small charm quark flow

$J/\psi v_2$ and R_{AA}

- Indication of small regeneration effect in isobar collisions
- The color-screening effect is the dominate hot medium effect that affects J/ψ production at RHIC

Summary

- $J/\psi v_2$ measurement in Isobar collisions: most precise in HIC at RHIC so far
 - v_2 is consistent with zero at 2% precision level at low- p_T range
- Indication of small regeneration effect and the color-screening effect significantly affects the J/ψ production at mid-rapidity in isobar collisions
- Theory inputs are very welcome!!

