相对论重离子碰撞中QCD相图实验研究进展

Xiaofeng Luo (罗晓峰)

Central China Normal University (华中师范大学)

2022年8月8-11日

相对论重离子碰撞:加热到万亿度(10¹² °C)!!

人类目前为止制造的最高温度:约为太阳中心温度的10万倍。

太阳核心温度: 2000000 K (夸克仍被禁闭在强子中)

T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974). Vacuum stability and vacuum excitation in a spin-0 field theory.

重离子被加速到接近光速发生对撞,创造出高温 高密环境使夸克解禁闭形成夸克胶子等离子体。

夸克、胶子为自由度的强耦合理想流体 (sQGP)

- 1. 一定温度和密度下的热力学性质,如:
- ▶ 状态方程
- 粘滞系数、输运系数
- 涡旋、磁场强度
- 2. 研究产生QGP的条件,探索QCD相结构(一级 相变边界、临界点)? 如:水的相变

临界现象:

- 密度涨落增强与关联长度增大: 临界乳光现象
- 系统的对称性决定临界指数:即
 热力学量的临界发散行为
- 内因:相互作用、系统对称性 外因:外部条件的改变

强相互作用(QCD)物质相图

QCD相图结构被发现杂志评为:本世纪物理学11大未解决难题之一

QCD临界点位置:理论模型计算

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2021)

理论上确定QCD相变临界点的位置有较大的不确定性。

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月8-11日

QCD临界点位置:理论模型计算

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2021)

Fluctuations Probes the QCD Phase Transition

1. Fluctuations signals the QCD Critical Point.

M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. D 60, 114028 (1999).

2. Fluctuations signals the Quark Deconfinement.

S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076(2000). M. Asakawa, U. Heinz and B. Muller, Phys. Rev. Lett. 85, 2072 (2000). 比热 -> 能量涨落 不可压缩系数->粒子数涨落

热力学强度量与延展量的涨落相关

CERES, Nucl. Phys. A 727:97,2003 STAR, Phys. Rev. C 99 (2019) 44918 STAR, Phys. Rev. C 92 (2015) 21901 NA49, Phys. Rev. Lett. 86 (2001) 1965 NA49, Phys. Rev. C 78 (2008) 034914

罗晓峰

 Higher order cumulants/moments: describe the shape of distributions and quantify fluctuations. (sensitive to the correlation length (ξ))

$$\langle \delta N \rangle = N - \langle N \rangle$$

$$C_{1} = M = \langle N \rangle$$

$$C_{2} = \sigma^{2} = \langle (\delta N)^{2} \rangle$$

$$C_{3} = S\sigma^{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \kappa \sigma^{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

$$\left\langle (\delta N)^{3} \right\rangle_{c} \approx \xi^{4.5}, \quad \left\langle (\delta N)^{4} \right\rangle_{c} \approx \xi^{7}$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009); 107, 052301 (2011). *M.Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett.* 103, 262301 (2009).

2. Direct connect to the susceptibility of the system

$$\frac{\chi_q^4}{\chi_q^2} = \kappa \sigma^2 = \frac{C_{4,q}}{C_{2,q}} \qquad \frac{\chi_q^3}{\chi_q^2} = S \sigma = \frac{C_{3,q}}{C_{2,q}},$$
$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

Cheng et al, PRD (2009) 074505. F. Karsch and K. Redlich , PLB 695, 136 (2011). S. Gupta, et al., Science, 332, 1525(2012). A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13)

Signals of QCD Critical Point : Theory/Model

1

()

M. Stephanov, PRL107, 052301 (2011); J. Phys. G 38, 124147 (2011).
Schaefer et al., PRD 85, 034027 (2012); W. Fu et al., PRD 94, 116020 (2016).
J.W. Chen, J. Deng, et al., PRD 93, 034037 (2016). PRD 95,014038 (2017).
W. K. Fan, X. Luo, H.S. Zong, IJMPA 32, 1750061 (2017);
G. Shao et al., EPJC 78, 138 (2018); Z. Li et al., EPJC 79, 245 (2019).
A. Bzdak et al., Phys. Rep. 853, 1(2020). D. Mroczek et al, arXiv: 2008.04022.

Caveats : Non-equilibrium, finite size/time effects

M. Asakawa, M. Kitazawa, B. Müller, PRC 101, 034913 (2020). S Mukherjee, R. Venugopalan, Y Yin, PRL 117, 222301 (2016). S. Wu, Z. Wu, H. Song, PRC 99, 064902 (2019).

 $\kappa\sigma^2 = 1$ (Poisson Fluctuations)

Characteristic signature of CP: Non-monotonic energy dependence

"Oscillation Pattern" Especially the Peak at low energies

STAR Detector System

BES-I & II at RHIC (2010-2017, 2018-2021)

Collider mode Au+Au Collisions

FXT mode

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _B (MeV)	Т _{СН} (MeV)
200	238	2010	25	166
62.4	46	2010	73	165
54.4	1200	2017	83	165
39	86	2010	112	164
27	30 (<mark>560</mark>)	2011/2018	156	162
19.6	538 / 15	2019 /2011	206	160
14.5	325 / 13	2019 /2014	264	156
11.5	230 / 7	2020 /2010	315	152
9.2	160 / 0.3	2020 /2008	355	140
7.7	100 / 3	2021 /2010	420	140
17.3	250	2021	230	158

√s _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	μ _Β (MeV)	Т _{СН} (MeV)
7.7	50+112	2019+2020	420	140
6.2	118	2020	487	130
5.2	103	2020	541	121
4.5	108	2020	589	112
3.9	117	2020	633	102
3.5	116	2020	666	93
3.2	200	2019	699	86
3.0	259	2018	750	80
3.0	2000	2021	750	80

(µ_B, T_{CH}) : J. Cleymans et al., PR**C73**, 034905 (2006)

STAR, arXiv:1007.2613

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0493 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Most precise data to map the QCD phase diagram : $3 \le \sqrt{s_{NN}} \le 200 \text{ GeV}, 25 < \mu_B < 750 \text{ MeV}$

Analysis Details-I

	Net-Charge	Net-Proton	Net-Kaon	
Kinematic cuts	$0.2 < p_{_{T}} (\text{GeV/c}) < 2.0$ $ \eta < 0.5$	0.4 < p _T (GeV/c) < 2.0 y < 0.5	0.2 < p _T (GeV/c) < 1.6 y < 0.5	
Particle Identification	Reject protons form spallation for $p_{T} < 0.4$ GeV/c	$0.4 < p_T (GeV/c) < 0.8 \rightarrow TPC$ $0.8 < p_T (GeV/c) < 2.0 \rightarrow TPC+TOF$	$0.2 < p_T$ (GeV/c) < 0.4 → TPC $0.4 < p_T$ (GeV/c) < 1.6 → TPC+TOF	
Centrality definition, → to avoid auto-correlations	Uncorrected charged primary particles multiplicity distribution	Uncorrected charged primary particles multiplicity distribution, without (anti-)protons	Uncorrected charged primary particles multiplicity distribution, without (anti-)kaons	
	$0.5 < \eta < 1.0$	$ \eta < 1.0$	$ \eta < 1.0$	
TOF PID	T	PC PID	Phase Space	
$\begin{bmatrix} 1.2 & -14.5 \text{ GeV} \\ 1 & 0.8 \\ 0.8 \\ 0.9 & 0.4 \\ 0.2 \\ 0 & -0.2 \\ -2.5 & -2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 \\ 0 & 0.6 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	10^4 10^4	10^4 3 10^3 (3) $210^2 2110^2 110^2 110^2 1110^2 110^2 11110^2 11110^2 1111111111$	14.5GeV TPC+TOF TPC TPC TPC TPC TPC TPC TPC TPC	
pq(Gev/c)	p*q	(GeV/c)	Proton Hapiaity	

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月8-11日

Analysis Details- II

- 1. Statistical errors estimation : Delta theorem or bootstrap
- 2. Avoid auto-correlation effects: New centrality definition.
- 3. Suppress volume fluctuation: Centrality bin width correction (CBWC)
- 4. Detector efficiency correction : Binomial model

Review Article : X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).[被引297次]

X.Luo, J. Phys. G39, 025008 (2012); A. Bzdak and V. Koch, PRC86, 044904 (2012); X.Luo, et al. J. Phys. G40,105104(2013); X.Luo, Phys. Rev. C 91, 034907 (2015); A . Bzdak and V. Koch, PRC91, 027901 (2015). T. Nonaka et al., PRC95, 064912 (2017). M. Kitazawa and X. Luo, PRC96, 024910 (2017). S. He, X. Luo, Chin. Phys. C43, 104001 (2018), X. Luo and T. Nonaka, PRC99, 044917 (2019); Arghya Chatterjee, PRC 101,034902 (2020) Fan Si, et al. CPC 45, 124001 (2021)

罗晓峰

第一阶段能量扫描高阶矩测量结果

STAR, PRL 112, 032302 (2014).

STAR, PRL113, 092301 (2014). STAR, PLB 785, 551 (2018).

罗晓峰

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月8-11日

Multi-Particle Correlations : Larger acceptance -> Larger signal

B. Ling, M. Stephanov, Phys. Rev. C 93, 034915 (2016) 姜丽佳, 李鹏飞, 宋慧超, Phys. Rev. C 94, 024918 (2016)

Acceptance: $|\mathbf{y}| \le 0.5$, $0.4 \le p_T \le 2$ GeV/c Efficiency corrections:

TPC ($0.4 \le p_T \le 0.8 \text{ GeV/c}$): $\epsilon_{TPC} \sim 0.8$ TPC+TOF ($0.8 \le p_T \le 2 \text{ GeV/c}$): $\epsilon_{TPC} * \epsilon_{TOF} \sim 0.5$

XFL, Phys. Rev. C 91, 034907 (2015).

Raw Event-by-Event Net-Proton Distributions

Mean values increase when decreasing energy: Interplay between baryon stopping and pair production.

2011-2021: 以STAR实验中国组为主导的合作团队经过10年测量、分析得到的实验结果

M. Stephanov, PRL107, 052301(2011); JPG 38, 124147 (2011). JW Chen, J. Deng et al., PRD93, 034037 (2016);

STAR, Phys. Rev. Lett. 126, 092301 (2021) STAR, Phys. Rev. C 104, 024902 (2021) 关键能区: 3 – 19.6 GeV。 第二阶段能量扫描(2019-2021), 实验数据 已采集, 正在加紧刻度、分析中。

首次在金金中心碰撞中观测到净质子数涨落的非单调能量依赖(3.1σ),与理论预言的QCD临界点信号 一致,暗示进入临界区。该测量为在第二阶段能量扫描中3-19.6 GeV能量区间进行高精度测量、进一步 明确QCD临界点信号和位置提供重要实验参照。

Fixed-target mode at STAR (2018-2021)

3 GeV is the lowest energy of STAR fixed target experiment which extends the coverage of μ_B up to 750 MeV !

Energy Dependence of Fourth-order Fluctuations

- The suppression of C₄/C₂ is consistent with fluctuations driven by baryon number conservation which indicates a hadronic interaction dominated region in the top 5% central Au+Au collisions at 3 GeV.
- The QCD critical point, if exists in heavy ion collisions, could likely be at energy higher than 3 GeV.
 STAR. Phys. Rev. Lett. 128, 202303 (202)

STAR, Phys. Rev. Lett. 128, 202303 (2022) 3 GeV : Yu Zhang (张宇), Ph.D thesis

Higher-order baryon number fluctuations

STAR, Phys. Rev. Lett. 127, 262301 (2021)

A. Bazavov, 丁亨通(HotQCD)等, Phys. Rev. D 101, 074502 (2020);

- > First principle Lattice QCD calculation predicts $C_6/C_2 < 0$.
- $> C_6/C_2$ progressively negative from peripheral to central collisions Indicate smooth crossover at 200 GeV.

C₆/C₂ : System Size Dependence

Lattice QCD and FRG Model : Negative C_6 when T ~ Tc could serve as experimental evidence of chiral crossover.

AuAu: PRC 104 (2021) 024902; PRL 126.092301 (2021), PRL 127 (2021) 262301 (2021). Isobar data and p+p data : QM2022 (文章在合作组内部审核)

- Cumulant ratios (up to C6) of net-proton from p+p, Au+Au and isobar data, systematic decreasing trend with multiplicity, approaching LQCD calculations
- Most central Au+Au collision results become consistent with Lattice QCD prediction for the formation of thermalized QCD matter and smooth crossover transition.

Energy Dependence of Fifth- and Sixth-order cumulants

- 1. C_5/C_1 (0-40%) fluctuates around zero.
- 2. C_6/C_2 progressively negative with decreasing collision energy down to 7.7 GeV.
- \sim 1.7 sigma to be negative sign.
- 3. Consistent with lattice QCD with μ_B < 110 MeV.

STAR, arXiv : 2207.09837, submitted to PRL.

Even higher-order baryon number fluctuations

付伟杰, XFL等, Phys. Rev. D 104, (2021) 094047 (Editor Suggestion)

- ➢ Higher-order fluctuations are more sensitive to QCD phase transition.
- > Negative C6 and C8 crossover transition.
- > Exp. : Statistical hungry and background effects maybe complicated.

STAR: 2023-2025年将采集金金200 GeV, 20亿个事列, 有望精确测量5-8阶涨落。

Major Upgrades for BES-II

All 3 detectors fully installed prior to start of Run-19 Very successful and important for BES-II

iTPC:

- Improves dE/dx
- > Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 to 60 MeV/c
- Ready in 2019

eTOF:

- Forward rapidity coverage
- \triangleright PID at $\eta = 0.9$ to 1.5
- > Borrowed from CBM-FAIR
- ➤ Ready in 2019

EPD:

- Improves trigger
- Better centrality & event plane measurements
- ➤ Ready in 2018

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance centrality/event plane resolution

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF group, arXiv: 1609.05102 EPD: J. Adams, et al. Nucl. Instr. Meth. A 968, 163970 (2020)

Summary

- 1) BES-I : Indicate QCD critical point between 3– 40 GeV.
- 2) Au+Au collisions at 200 GeV, $\mu_{\rm B} \sim 25$ MeV, QGP EOS dominant, smooth crossover transition.
- 3) At 3 GeV collisions, $\mu_B \sim 750$ MeV, different EOS comparing to high energy. hadronic dominated !
- 4) BES-II (completed !), analysis ongoing.
 7.7 ~ 19.6 GeV (collider)
 3 ~ 7.7 GeV (FXT)
- 5) Other sensitive observable : light nuclei production, intermittency.

Stay tuned for the exciting physics from RHIC BES-II (2019-2021) !

Outlook

万亿摄氏度下烹煮夸克汤:核物质相结构 和量子色动力学相变临界点的实验研究

科普(前沿进展): XFL、刘峰、许怒,《物理》50(2), (2021)

Mapping out the QCD phase structure at high baryon density with high precision:

- (1) RHIC BES-II : Collider ($\sqrt{s_{NN}}$ =7.7 19.6 GeV) and FXT ($\sqrt{s_{NN}}$ = 3 7.7 GeV) mode.
- (2) Future Facilities ($\sqrt{s_{NN}}$ = 2 11 GeV) : FAIR/CBM, NICA/MPD, HIAF/CEE, JPARC-HI.

Book "Properties of QCD Matter at High Baryon Density"

Chapter 6

Concluding Remarks

This review is a collective effort of many experts from several subfields. It comprises of 14 months of work, started in the fall of 2020. A wide range of topics is covered, from the strong interaction properties of the deconfined quark-gluon plasma to the equation of state of compact stars and their connection to high-energy nuclear collisions. Future directions are articulated exploiting high baryon density regime afforded by several accelerator complexes under construction, with natural connection to astro-nuclear physics. The physics of high baryon density is a new beginning for the field of high-energy nuclear collisions.

At the end of "A Brief History of Time", S. Hawking wrote: "We want to make sense of what we see around us and to ask: What is the nature of the universe? What is our place in it and where did it and we come from? Why is it the way it is?"

These, in a sense, are the same questions we are asking. How is the visible world made under the law of Quantum Chromodynamics? What is its phase structure? What are its properties? Our curiosity persists and the quest for a deeper understanding of our universe continues on.

> Xiaofeng Luo, Qun Wang, Nu Xu, and Pengfeng Zhuang January, 2022, Beijing

A collective effort of many experts from several subfields. Editors : XFL, Qun Wang, Nu Xu, and Pengfeng Zhuang Springer 2022 in production.

谢谢大家!

Light nuclei production as probes of QCD phase structure

Based on coalescence model: Near first order P.T. or critical point : $N_t \cdot N_p / N_d^2 \approx g(1 + \Delta n)$ large density fluctuations and baryon clustering Neutron density fluctuations $\Delta n = \langle (\delta n)^2 \rangle / \langle n \rangle^2$ Statistical Hadronization Model 0.8 MUSIC+Coalescence proton □ 39 GeV ○ 7.7 GeV N²N²N,0 N^dN,N 14.5 GeV △ 62.4 GeV 19.6 GeV 200 GeV 27 GeV VISHNU+Coalescence 2760 GeV (N_t:1109→709) deuteron 244 资料资料资料 0.4 AMPT+Coalescence (7.7-200 GeV) Gaussian Source Fit 200 400 600 triton $dN_{cb}/d\eta$ (η l<0.5)

W. Zhao, K.J. Sun, C.M. Ko, X. Luo, Phys. Lett. B 820, 136571 (2021)

The compound yield ratio is a powerful tool to probe the signature of critical point and distinguish the different production mechanism of light nuclei in heavy-ion collisions

K.J. Sun, L.W. Chen, C.M. Ko, and Z.B. Xu, PLB 774, 103 (2017); K.J. Sun, L.W. Chen, C.M. Ko, J. Pu, and Z.B. Xu, PLB781, 499 (2018) Edward Shuryak, Juan M. Torres-Rincon, PRC 100, 024903 (2019); PRC 101, 034914 (2020); EPJA 56, 241 (2020). H. Liu et al, Phys. Lett. B 805, 135452 (2020). K. Sun, C. M. Ko, Phys. Rev. C 103,064909 (2021); W. Zhao et al., Phys. Rev. C102, 044912 (2020); X. G. Deng, Y. G. Ma, Phys. Lett. B 808, 135668 (2020);

Light Nuclei Production in Au + Au Collisions

3 GeV STAR data : 刘慧, QM2022 talk

- FXT 3 GeV shows different trend compared to BES-I Au+Au collisions, indicating a different medium equation of state (EoS) at 3 GeV
- The AMPT model with 1st order P.T. EoS with a critical temperature (~154MeV) shows the same centrality dependence as that observed by STAR experiment
- BES-I triton paper is under collaboration review.
 K. J. Sun et al. arXiv: 2205.11010

Probing the **density fluctuations** and long range correlations near the **QCD critical point** via intermittency analysis in transverse momentum plane.

吴锦(for STAR), ISMD2021

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月8-11日