Jet-like correlations with V^0 trigger particles in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Mustafa Anaam

Central China Normal University on behalf of ALICE Collaboration

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 Aug-09- 2022

Mustafa Anaam, CCNU

On the near-side :

- Change of the fragmentation function
- Change of the quark vs gluon jet ratio
- \succ Bias on the parton p_{T} spectrum.

On the away-side :

The suppression at high $p_{T,assoc}$ ($I_{AA} < 1$) is evidence of parton energy loss.

The enhancement at low $p_{T,assoc}(I_{AA} > 1)$ may involve an interplay of various contributions, such as k_T broadening, medium excitation, fragments from radiated gluons

Motivation

• Why we measure I_{AA} for $V^0 - h$?

Considering K_s^0 and Λ are proxies of quark and gluon jets, we want to investigate :

- > The difference of the parton energy loss effects on quark and gluon jets
- The difference in the interaction amplitude with the medium for the quark and gluon jets

ALICE detector

Strange- hadrons correlations

- The near-side peak size is slightly larger in the Pb–Pb collisions
- Away-side peak strongly suppressed in the Pb–Pb collisions in contrast to the pp

- Low p_{T,assoc}: strong enhancement in near-side and away-side for all particles species
- High p_{T,assoc}: suppression in away-side, no modifications in near-side for all particles species
- No significant specie-dependence in I_{AA} within uncertainties specially in away-side

I_{AA}:Compare with published

• New measurement consistent with previous ones at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

as expected

escribes I_{AA} , HIJING shows suppressions on the away-side at high $\, {f p}_{T,a}$

♦ We studied near-side and away-side yield, and I_{AA} for (K⁰_s-h), (Λ + Λ̄) - h and (h - h) in pp and Pb-Pb (0–10%)

- I_{AA} shows strong enhancement at low $p_{T,assoc}$ in near-side and away-side for all particles species
- I_{AA} shows strong suppression at high $p_{T,assoc}$ in away-side for all particles species
- I_{AA} shows no significant specie-dependence specially in away-side.

We compared the result with published and model calculations.

- I_{AA} shows good agreements with published result from $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- AMPT performs better than other.

Back-up

pp

Jet-like yield Model comparison

Away-side **Near-side** (h - h)1.2 0.6 **ALICE Preliminary ALICE Preliminary** $(GeV^{-1}c)$ 0.5 $1/N_{\rm trig} \, dN/d\rho_{\rm T,assoc} \, ({\rm GeV}^{-1}c)$ pp vs = 5.02 TeV pp √s = 5.02 TeV 8<p_____<16 GeV/c 8<p_tria<16 GeV/c 0.8 0.4 |Δφ-π|<1.2, |Δη|<0.7 |Δφ|<0.9, |Δη|<0.7 $1/N_{\rm trig}~{\rm d}N/{\rm d}p_{\rm T,assoc}$ 0.3 0.6 - AMPT AMPT h-h PYTHIA8 CR EPOS **PYTHIA8 CR** EPOS - - PYTHIA8 NoCR ----- PYTHIA6 - PYTHIA8 NoCR ----- PYTHIA6 0 0.2 0.1 6 8 9 10 6 8 9 $p_{\rm T,assoc}$ (GeV/c) $p_{_{\mathrm{T,assoc}}} \, (\mathrm{GeV}/c)$ ALI-PREL-491133 ALI-PREL-491138 2.5 **ALICE Preliminary ALICE Preliminary** $1/N_{\rm trig} \, dN/dp_{\rm T,assoc} \, ({\rm GeV}^{-1}c)$ 2.5 Pb-Pb (0-10%) $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV $1/N_{trig} dN/dp_{T,assoc}$ (GeV⁻¹c) Pb-Pb (0-10%) $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV 8<p____<16 GeV/c $8 < p_{T,trig} < 16 \text{ GeV}/c$ 2 |Δφ|<0.9, |Δη|<0.7 Δφ-π|<1.2, Δη|<0.7 .5-AMPT ---- h--h 1.5F AMPT -h-h Pb-Pb --- EPOS --- HIJING --- EPOS --- HIJING 0.5 0.5

9

 $p_{_{\mathrm{T,assoc}}} \, (\mathrm{GeV}/c)$

10

2

ALI-PREL-491128

2

6

5

9

 $p_{\rm T,assoc}~({\rm GeV}/c)$

8

10

6

5

3

AMPT, EPOS and PYTHIA qualitatively describes the yield in pp except lowest p_T

AMPT and EPOS qualitatively 0 describes the yield in Pb-Pb

ALI-PREL-491123

Jet-like yield(Model comparison)

AMPT, EPOS and PYTHIA qualitatively describes the yield in pp except lowest *p_T*

AMPT and EPOS qualitatively describes the yield in Pb–Pb except lowest p_T

Jet-like yield (Model comparison)

pp

AMPT, EPOS and PYTHIA qualitatively describes the yield in pp except lowest p_T

AMPT qualitatively describes 0 yield in Pb–Pb except lowest p_T .