Production of charmed hadrons in heavyion collisions

Baoyi Chen (陈保义)

天津大学

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Collaborators:

Jiaxing Zhao, Xiao-Hai Liu, Yunpeng Liu, Pengfei Zhuang

Outline

1. Introduction

heavy ion collisions & charmed hadrons

2. Production of charmed hadrons: D, X(3872), B_c , J/ψ

D meson spectrum (c – \bar{q})

- J/ψ spectrum (c \bar{c}) flows $v_{1,2,3}$
- *B*_c production $(c \overline{b})$

X(3872) as a tetraquark: $c + \overline{c} + q + \overline{q} \rightarrow X(3872)$ in QGP

<u>as a meson molecule</u>: $c + \overline{q} \rightarrow D$, $D^0 + \overline{D}^{*0} \rightarrow X(3872)$ in hadronic gas

1. introduction

 Different from pp collisions, AA collisions produce an extremely hot de-confined medium:

significant color screening + parton inelastic scatterings

Light hadrons: produced at the boundaries of QGP phase transition T=Tc **Charmonium/bottomonium:** primordial production + coalescence inside QGP (T>Tc)

1. Properties of charmed mesons

- (1) For D mesons, produced at $T = T_c$
- (2) For J/ψ or bottomonium,

they can be produced inside QGP with $T > T_c$ due to larger binding energies

Liu, Carsten, etal, Phys.Rev.C 87 (2013) 1, 014910

BYC, Zhao, Phys.Lett.B 772 (2017) 819-824

(4) For X(3872) tightly bound tetraquark/charmonium-like(2P) states ? Molecular states? 4

2. Heavy quark dynamical evolution

2. Heavy quark dynamical evolution

(1) initial distribution

Charm initial positions:

Proportional to the $N_{coll}(\vec{x}_T)$, Corrected by shadowing effect (EPS09)

(2) Charmonium coalescence at the hadronization temperature

$$\begin{split} \mathsf{P}_{c+\bar{c}\to\psi}(\vec{x}_M,\vec{p}_M) &= g_M \int d\vec{x}_1 d\vec{x}_2 \frac{d\vec{p}_1}{(2\pi)^3} \frac{d\vec{p}_2}{(2\pi)^3} \frac{d^2 N_1}{d\vec{x}_1 d\vec{p}_1} \frac{d^2 N_2}{d\vec{x}_2 d\vec{p}_2} f_M^W(\vec{x}_r,\vec{q}_r) \\ &\times \delta^{(3)}(\vec{p}_M - \vec{p}_1 - \vec{p}_2) \delta^{(3)}(\vec{x}_M - \frac{\vec{x}_1 + \vec{x}_2}{2}) \end{split}$$

g_M = 1/12 Vector meson degeneracy factor from color and spin

 f^W_M(*ẋ_r*, *q̇_r*): Wigner function. (*ẋ_r*, *q̇_r*) in the center of mass frame of *c* − ⁶*c̄*

3. charmed hadron production

Wigner function: encodes the information of formed states

$$f_{J/\psi}^{W}(\vec{x}_{r},\vec{q}_{r}) = 8\exp\left[-\frac{x_{r}^{2}}{\sigma^{2}} - \sigma^{2}q_{r}^{2}\right] \qquad \qquad \vec{x}_{r} = \vec{x}_{1}^{cm} - \vec{x}_{2}^{cm}$$
$$\vec{q}_{r} = \frac{E_{1}^{cm}\vec{p}_{1}^{cm} - E_{2}^{cm}\vec{p}_{2}^{cm}}{E_{1}^{cm} + E_{1}^{cm}}$$
$$\sigma^{2} = \frac{4}{3}\frac{(m_{1} + m_{2})^{2}}{m_{1}^{2} + m_{2}^{2}} < r^{2} >_{M}$$
Give consistent formation conditions on the relative distance and relative momentum of two particles.

The width σ **in the Wigner function** is connected with the internal structure of the formed state

Hadron Spectrum in heavy-ion collisions

$$\frac{d^2 N_{\psi}}{dy_M d\vec{p}_T} = \int d\vec{x}_M \frac{dp_z}{2\pi} < P_{c+\bar{c}\to\psi}(\vec{x}_M,\vec{p}_M) >_{events} \times \frac{(\Delta N_{c\bar{c}}^{AA})^2}{\Delta y_M}$$
$$\Delta N_{c\bar{c}}^{AA} = \int d\vec{x}_T T_A(\vec{x}_T - \frac{\vec{b}}{2}) T_B(\vec{x}_T + \frac{\vec{b}}{2}) \frac{d\sigma_{pp}^{c\bar{c}}}{dy} R_S(\vec{b},\vec{x}_T) \Delta y_{c\bar{c}}$$
Shadowing factor

3. charmed hadron production: D meson

D meson coalescence

$$P_{c\bar{q}\to D^{0}}(\vec{p}_{M}) = H_{c\to D^{0}} \int \frac{d\vec{p}_{1}}{(2\pi)^{3}} \frac{d\vec{p}_{2}}{(2\pi)^{3}} \frac{dN_{1}}{d\vec{p}_{1}} \frac{dN_{2}}{d\vec{p}_{2}} f_{D}^{W}(\vec{q}_{r}) \times \delta^{(3)}(\vec{p}_{M} - \vec{p}_{1} - \vec{p}_{2})$$

$$\frac{d^{2}N_{D}}{dy_{M}d\vec{p}_{T}} = \int \frac{dp_{z}}{2\pi} < P_{c\bar{q}\to D^{0}}(\vec{p}_{M}) >_{events} \times \frac{\Delta N_{c\bar{c}}}{\Delta y_{M}}$$

$$\gg H_{c\to D^{0}} = 9.5\% (20\%): \text{ Charm turning into direct } D^{0} (D^{*0}) \text{ at Tc}$$

$$\gg \frac{dN_{1}}{dN_{1}}: \text{ charm momentum distribution}$$

 $\frac{dN_1}{d\vec{p}_1}: \frac{charm}{momentum} \text{ distribution} \\ \frac{dN_2}{d\vec{p}_2}: \frac{light quark}{momentum} \text{ distribution}: Fermi.$

- We take the ratio of prompt D^0 over charm: $N(D^0)/N_{c\bar{c}} = 39\%$ *ALICE pp, arXiv:2105.06335*
- Different thermalization: $D_s(2\pi T) = 5$ (solid line) and $D_s(2\pi T) = 2$ (dotted-dashed line)

BYC, Jiang, Liu, Liu, Zhao, Phys. Rev. C 105, 054901 (2022)

3. charmed hadron production: J/ψ

3. charmed hadron production: X(3872)

- \blacktriangleright $g_{X(3872)} = 1/432$ with X(3872) spin J=1
- ▶ Root-mean-square radius of tetraquark: $\langle r^2 \rangle_X = 0.30 0.54 fm^2$
- diquark (*c*q) is formed at first, then two diquarks form a tetraquark state.

- Tetraquark yield is around 40 times smaller than J/ψ
- Tetraquark yield is controlled by both spatial and momentum part of the Wigner function

Molecule state with potential model

Λ	0.55	0.555	0.56	0.565	0.57	0.575	0.579
BE.(keV)	1600.3	1098.5	698.4	394.4	180.6	51.2	3.3
$\langle r angle({ m fm})$	2.47	2.85	3.41	4.31	6.01	10.52	22.60
$\sqrt{\langle r^2\rangle} ({\rm fm})$	3.08	3.59	4.36	5.61	8.00	14.33	28.94

Bands:

Volume dependence in freeze-out

3. charmed hadron production: X(3872)

- $\blacktriangleright g_{X(3872)} = 1/432$ with X(3872) spin J=1
- ▶ Root-mean-square radius of tetraquark: $\langle r^2 \rangle_X = 0.30 0.54 fm^2$
- diquark (cq) is formed at first, then two diquarks form a tetraquark state.

3. charmed hadron production: X(3872)

- $g_{X(3872)} = 1/432$ with X(3872) spin J=1
- ▶ Root-mean-square radius of tetraquark: $\langle r^2 \rangle_X = 0.30 0.54 fm^2$
- diquark (*c*q) is formed at first, then two diquarks form a tetraquark state.

- Our tetraquark yield $\sim 10^{-3}$ is consistent with <u>Cho. Prog.Part.Nucl.Phys. 95,279-322 (2017)</u>; our molecule production is a few times smaller than this.
- Relations between tetraquark and molecule production: ours is consistent with rate equation model <u>Rapp EPJA 57, 122 (2021);</u>

different from AMPT model: <u>Zhang PRL 126, 012301 (2021)</u>;

 \rightarrow maybe due to its different formation conditions.

5fm < relative distance < 7fm $2M_D < pair mass < 2M_{D^*}$

3. charmed hadron production: B_c

Geometry size

BYC, Wen, Liu, arXiv: 2111.08490

1) **Bc final production is evidently enhanced,** due to a large number of c and b quarks in QGP.

$$c + \overline{b} \rightarrow B_c + g$$

2) RAA>1 at central collisions:

QGP signal RAA<1 at peripheral collisions: absence of initial production¹³

3. charmed hadron production: B_c

Geometry size

dy

 $d\sigma_{l}^{i}$

dy

BYC, Wen, Liu, arXiv: 2111.08490

1) **Bc final production is evidently enhanced,** due to a large number of c and b quarks in QGP.

Different thermalization

of charm and bottom quarks on B_c production, By taking spatial diffusion coefficient $D_s(2\pi T) = 4$ and 7

14

- Longitudinal tilted distribution:
- Elliptic shape of initial energy density:

medium rotation geometry overlap

• Triangular shape of initial energy density: *event-by-event fluctuations*.

4. Summary

- We study the formation of charmed hadrons in the QGP.
- X(3872) as a tightly bound tetraquark and a hadronic molecule, is formed via different processes.
 <u>Their production depends on the wave function of X(3872)</u>.
 Therefore, heavy-ion collisions provide a new opportunity to study the nature of X(3872).
- B_c meson is firstly observed in AA collisions, evident enhancement of R_{AA}: a very clear signal of QGP
- Charm quarks carry collective flows from QGP, inherited by the charmed hadrons.

4. Summary

- We study the formation of charmed hadrons in the QGP.
- X(3872) as a tightly bound tetraquark and a hadronic molecule, is formed via different processes.
 <u>Their production depends on the wave function of X(3872)</u>.
 Therefore, heavy-ion collisions provide a new opportunity to study the nature of X(3872).

Thank you'very much for your attention!

> Molecule state based on potential model

	V _{mole}	=	V_{π}	+	V_{ω}	+	V_{η}	+	$V_{ ho}$
--	-------------------	---	-----------	---	--------------	---	------------	---	-----------

arXiv: 2107.00969

Λ	0.55	0.555	0.56	0.565	0.57	0.575	0.579
BE.(keV)	1600.3	1098.5	698.4	394.4	180.6	51.2	3.3
$\langle r angle({ m fm})$	2.47	2.85	3.41	4.31	6.01	10.52	22.60
$\sqrt{\langle r^2 \rangle} ({\rm fm})$	3.08	3.59	4.36	5.61	8.00	14.33	28.94

1. Properties of charmed mesons

 $B(B_c^+ \to J/\psi \,\mu^+ \nu) = (2.37 - 4.54)\%$

• D meson coalescence

$$P_{c\bar{q}\to D^{0}}(\vec{p}_{M}) = H_{c\to D^{0}} \int \frac{d\vec{p}_{1}}{(2\pi)^{3}} \frac{d\vec{p}_{2}}{(2\pi)^{3}} \frac{dN_{1}}{d\vec{p}_{1}} \frac{dN_{2}}{d\vec{p}_{2}} f_{D}^{W}(\vec{q}_{r}) \times \delta^{(3)}(\vec{p}_{M} - \vec{p}_{1} - \vec{p}_{2})$$

$$\frac{d^{2}N_{D}}{dy_{M}d\vec{p}_{T}} = \int \frac{dp_{z}}{2\pi} < P_{c\bar{q}\to D^{0}}(\vec{p}_{M}) >_{events} \times \frac{\Delta N_{c\bar{c}}^{AA}}{\Delta y_{M}}$$

- → $H_{c \to D^0} = 9.5\%$: Charm quarks turning into **direct** D^0 at the phase transition → $\frac{dN_1}{d\vec{p}_1}$: <u>charm</u> momentum distribution
- $\succ \frac{dN_2}{d\vec{p}_2}$: <u>light quark</u> momentum distribution. See below.
- Assume all $c \rightarrow D^0$ via the coalescence process, neglect the fragmentation. This simplification works well in low or moderate p_T region.

