

JUNO Neutrino Mass Ordering Sensitivity

Jinnan Zhang^{1,2} (张金楠)

On behalf of the JUNO collaboration

August 11, 2022

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

E-mail: zhangjinnan@ihep.ac.cn

¹中国科学院高能物理研究所 ²中国科学院大学

- Introduction
- Reactor neutrino analysis of JUNO
 - Reactor $\overline{\nu}_e$ flux and detection
 - Detector response
 - NMO sensitivity
- Atmospheric neutrinos of JUNO
 - Complementary measurement
- Summary

Neutrino Mixing Open Question

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2} = \left| \sum_{i=1}^{3} \sum_{j=1}^{3} U_{\alpha i}^{*} U_{\beta j} \langle \nu_{j} | \nu_{i}(t) \rangle \right|^{2}$

• v_1 has the largest component of the v_e .

• v_3 has the smallest component of the v_e .

• Neutrino mass ordering: Whether ν_3 mass eigenstate is heavier or lighter than the ν_1 and ν_2 ?

The JUNO detectors

日)

口)

口)

口)

- A 20 kton multipurpose liquid scintillator (LS) detector
 - < 3% resolution @1 MeV
 - Optimized of neutrino mass ordering (NMO) determination

Top Tracker and

calibration house

Water pool

Earth magnetic

field compensation

coils

Photomultiplier

tubes

Acrylic spherical

vessel filled with

liquid scintillator

Acrylic supporting

nodes

• A 2.8 ton Gd-loaded LS satellite detector

• < 2% resolution @1 MeV

JUNO:

20 kton

Liquid

Scintillator

Reactor neutrino analysis

Reactor $\overline{\nu}_e$ flux and detection

- Signal source: $\bar{\nu}_e$ from fission of ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu
- Major: 6 Yangjiang (YJ) cores, 4→2 Taishan (TS) cores:
 - $\mathbf{35.8} \rightarrow \mathbf{26.6} \ \mathbf{GW_{th}}$

J. Phys. G43:030401 (2016) → arXiv:2104.02565

- Detection channel: $\bar{\nu}_e + p \rightarrow e^+ + n$
- e⁺ gives prompt signal
- ► $E_p \in [0.7, 12]$ MeV, in a few ns
- *n* on H or C gives delayed signal
- ► $E_d \in [1.9, 2.5] \cup [4.4, 5.5]$ MeV
- After ~200 μs
- Prompt-delayed vertex distance
- Tens of centimeters

Cores	YJ-1	YJ-2	YJ-3	YJ-4	YJ-5	YJ-6	TS-1	TS-2	DYB	HZ
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline(km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

• Oscillation [1]:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E} - \frac{\sin^2 2\theta_{13}}{4E} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}\right)$$

- In inverse beta decay (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$
 - Prompt signal by e⁺, brings most of the neutrino energy, consider energy nonlinearity (NL) and resolution (Res) effects

[1] Matter effect contributes maximal ~4% correction at ~3 MeV: Chin.Phys.C 40 (2016) 9, 091001, Phys.Lett.B 803 (2020) 135354

Reactor neutrinos at JUNO

- Time-energy-space coincidence to suppress background [1, 2]
- ➢ JUNO delayed signal: n-H (~2.2 MeV)
- ➤ TAO delayed signal: n-Gd (~8 MeV)

Rate [/day]	JUNO	TAO
Reactor IBD signal	47	2000
Geo-v′s	1.2	-
Accidental signals	0.8	155
Fast-n	0.1	92
⁹ Li/ ⁸ He	0.8	54
¹³ C(α , n) ¹⁶ O	0.05	-
Global reactors	1.0	-
Atmospheric ν 's	0.16	-

[1] arXiv: 2204.13249. [2] arXiv: 2005.08745. [3] DOI: <u>10.5281/zenodo.6775075</u>.

Reactor neutrinos at JUNO

- JUNO NMO median sensitivity $|\Delta \chi^2_{\min}| \equiv |\chi^2_{\min}(NO) \chi^2_{\min}(IO)|$ [1]: 3 σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure
- Paper under preparation.

Atmospheric neutrinos at JUNO

Major flavors:

 $v_{\mu}, \overline{v}_{\mu}, v_{e}, \overline{v}_{e}$

- Signal detection channels: Charged Current (CC) interactions
- Major backgrounds: Neutral Current (NC) interactions and cosmic muons.
- ~78% optical coverage of JUNO offers
- Great potential in PID, direction and energy reconstruction of atmospheric v's.

<i>N/</i> 10 yrs	ν	$\overline{\nu}$	Total
v_e/\overline{v}_e CC	6637	2221	8858
$ u_{\mu}/\overline{ u}_{\mu}$ CC	8662	3136	11798
$\nu_{ au}/\overline{ u}_{ au}$ CC	90	44	133
NC	8558	3697	12255

Number of atmospheric ν interactions in JUNO 10

Atmospheric neutrinos at JUNO

- Conservative 10 yrs sensitivity:
- ≻ NMO: 1~1.8*σ*.
- More realistic sensitivity study with reconstruction performance [1, 2, 3, 4] and combined with reactor $\overline{\nu}_e$ are in progress.

Particle identification (PID) progress by Y. Zhang [2]

[1] DOI: <u>10.5281/zenodo.6769313</u>. [2] DOI: <u>10.5281/zenodo.6782362</u>. [3] DOI: <u>10.5281/zenodo.6785153</u>. [4] DOI: <u>10.5281/zenodo.6804861</u>. 11

Summary

- JUNO NMO sensitivity with reactor $\overline{\nu}_e$: 3σ with ~6 years × 26.6 GW_{th}
- With nominal exposure, statistical-only $\Delta \chi^2_{min}$: 11.3
- Crucial systematics and $\Delta \chi^2_{\rm min}$ decrease:
 - Backgrounds: -1.4
 - Flux shape: -0.6
 - LS nonlinearity: -0.4
- Atmospheric neutrinos of JUNO provide different channels for NMO
 - Conservative sensitivity: $1 \sim 1.8\sigma$ for 10 years
- Combination analysis of reactor and atmospheric neutrinos is in progress that would increase the JUNO NMO sensitivity.
- Detector completion in 2023!

谢谢大家!

张金楠

Backup

Reactor antineutrino analysis updates

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%↑)
Muon veto efficiency	83%	91.6% (10% ↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10%↑)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1% for 36 keV	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 → 47	-	-
Geo-v's	1.1 → 1.2	30%	5%
Accidental signals	0.9 → 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
13 C($lpha$, n) 16 O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $v's$	0 → 0.16	50%	50%

Design in Physics book → this update [1] J. Phys. G 43:030401 (2016)

Major input updates:

Less statistics, better energy resolution

JUNO NMO sensitivity

- Reactor $\bar{\nu}_e$ signal IBD event number (×10⁵) 0.5 1.0 1.5 2.0 2.5 3. 3.0 JUNO Simulation Preliminary 20 |∆_{X²nin}| 10 Luminosity: Resolution ã: 2.8% 2700 Resolution ã: 2.9% kton · GW_{th} · year Resolution ã: 3.0% 4.Ŏ 3.9 3.8 4.0 3.9 3 3.7 3.6 3. ã [%] 33 4 3 3.2 3.1 3.0 2.9 2.8 Resolution esolution 16.0 2 25.0 2.7 2 .6 2.5 2.4 2.3 2.2 2.1 2.0 2. 2.1 2.0 1000 2000 3000 4000 5000 6000 7000 8000 10 20 $|\Delta \chi^2_{\rm min}|$ Luminosity [kton·GW_{th} · year] $\Delta \chi^2_{\rm min}$ contour for statistics and energy resolution
- The statistics and energy resolution are two key factors for NMO determination with reactor \overline{v}_e

Reactor antineutrino analysis updates

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%↑)
Muon veto efficiency	83%	91.6% (10% ↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10% î)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1% for 36 keV	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 🗲 47	-	-
Geo-v's	1.1 → 1.2	30%	5%
Accidental signals	0.9 → 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
¹³ C(<i>α</i> , <i>n</i>) ¹⁶ O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $v's$	0 → 0.16	50%	50%

Design in Physics book → this update J. Phys. G 43:030401 (2016)

Update of energy resolution

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11% ↑		arXiv: 2205.08629
New Central Detector Geometries	+3% ↑	2.9% @ 1MeV	
New PMT Optical Model	+8% ↑		EPJC 82 329 (2022)

- **Cherenkov** radiation
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- **Detector uniformity and reconstruction** ۲

Reactor Antineutrino Spectrum from TAO

1. ~94% coverage of SiPM with ~50% PDE

- 2. Inner diameter of target: 1.8 m, absorption of scintillation very small
- 3. Gd-LS works at -50°C, increase the photon yield

✓ Unprecedented energy resolution < 2% @ 1 MeV
 ✓ Shape uncertainty close to the assumption in the JUNO Physics Book (*J. Phys. G43:030401 (2016)*)

Atmospheric ν 's reconstruction progresses

Neutrino reconstruction angular resolution progresses, by T. Li, H. Duyang, Z. Liu [1].

[1] DOI: <u>10.5281/zenodo.6769313</u>. [2] DOI: <u>10.5281/zenodo.6782362</u>. [3] DOI: <u>10.5281/zenodo.6804861</u>.