

Determination of Double Beta Decay Halflife of ¹³⁶Xe with the PandaX-4T Natural Xenon Detector

Shanghai Jiaotong University On behalf of the PandaX Collaboration CHEP,2022/08/08-2022/08/11

NLDBD probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation
- Measures effective Majorana mass: relate 0vββ to the neutrino oscillation physics

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \ |M^{0\nu}|^2 \ \frac{|\langle m_{\beta\beta}\rangle|^2}{m_e^2}$$

Phase space factor

Nuclear matrix element

Effective Majorana neutrino mass:

$$\langle m_{\beta\beta} \rangle | = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

Detection of double beta decay

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Sum of two electrons energy

Measuring the DBD half-life

- Precision measurement of DBD is a major first ٠ step for any NLDBD experiment
- Understand better the background for more rare searches
- Searching for possible shape distortion for new **BSM** physics

Detector techniques The big four

Doped LS

Bolometer

HPGe

LXe TPC

PandaX detectors

NLDBD search at PandaX-II

- 580 kg natural xenon; ~50 kg of ¹³⁶Xe.
- 403.1 day of dark matter physics data
- Null results; Lower limit for decay half-life: 2.4×10²³ yr at 90% CL
- Effective Majorana mass upper limit: 1.3-3.5 eV.
- First NLDBD result reported from a dual-phase xenon experiment
- Proof of Principle

PandaX detectors

DBD search at PandaX-4T

Stable data taking during commissioning runs: 94.9 days for DBD analysis

External calibration sources for high energy detector response: ²³²Th (loops), ¹³⁷Cs, and ⁶⁰Co (DD tunnel)

Signal Efficiencies

- SS efficiency: 97.4% for DBD events > 440 keV
- DBD events generated with DECAYO package and went through PandaX-4T simulation and data processing chain.

- (Very mild) Data quality cut efficiencies: (99.4 ± 0.4)%
 - S1, S2, S1/S2: remove non-electron recoil and alpha events
 - Top and bottom S1 charge asymmetry vs. drift time: reject accidental coincidence events and events originating from the gate electrode.
 - Calculated by region
- Calculated from 9.6 days of physics data; validated with full data
- Validated with 164 and 236 keV peaks

10

Fiducial Volume: emphasis on systematics, not statistics

- Compare the number of events of ^{83m}Kr and ²²⁰Rn with geometric volume; the non-linearity between the two <0.5% defines the cut in R direction
- Z direction: smaller background rate
- Outer (dashed) region for cross-validation

FV mass

<u>-hochdoordoordoordoordoo</u> 700–600–500–400–300–200–100

Background components

			- r	Outer vessel Top Dome -	
Detector part	Contamination	Expected counts		Outer vessel Flange -	
Тор	$^{238}\mathrm{U}$	339 ± 129	_		
	232 Th	402 ± 133	Top -	Inner vessel Ton Dome	
	60 Co	327 ± 141		Inner vessel Flange -	
	$^{40}\mathrm{K}$	300 ± 156		Threaded -	
	$^{238}\mathrm{U}$	141 ± 51		Top PMT, Base and Spring -	
Bottom	$^{232}\mathrm{Th}$	237 ± 119			
	60 Co	159 ± 95		Outer vessel Barrel -	
	$^{40}\mathrm{K}$	89 ± 84	Side -{	Inner vessel Barrel -	
	$^{238}\mathrm{U}$	475 ± 707	ICLE AND		NDN TPO H
Side	232 Th	786 ± 959			
	60 Co	1244 ± 945	г	Bottom PMT, Base and Spring -	
	$^{40}\mathrm{K}$	1518 ± 835	Bottom -	Inner vessel Bottom Dome –	
LXe	222 Rn	12057		Outer vessel Bottom Dome –	

Simultaneous binned likelihood fit in four regions

¹³⁶Xe fit results: 17468±257; 2.27 ± 0.03(stat.) ± 0.10(syst.) × 10²¹ year half-life

Cross check with RooFit likelihood fit

Background results

• Compatible and more precise results from PandaX-4T than HPGe

Cross validation in the outer region

systematic source	Uncertainty[%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
²¹⁴ Pb spectrum	2.03
Bin size	0.05
Xe136 abundance	1.92
Fit range	1.23
Regional weight	1.58
Energy Resolution	0.58
Energy scale	0.26
¹³⁶ Xe spec. shape	0.36
Non-equilibrium decay chain	1.98
total	4.526

DBD half-life with PandaX-4T

systematic source	Uncertainty[%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
²¹⁴ Pb spectrum	2.03
Bin size	0.05
Xe136 abundance	1.92
Fit range	1.23
Regional weight	1.58 PA
Energy Resolution	0.58
Energy scale	0.26
¹³⁶ Xe spec. shape	0.36
Non-equilibrium decay chain	1.98
total	4.526

systematic source	Uncertainty[%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
²¹⁴ Pb spectrum	2.03
Bin size	0.05
Xe136 abundance	1.92
Fit range	1.23
Regional weight	1.58 PA
Energy Resolution	0.58
Energy scale	0.26
¹³⁶ Xe spec. shape	0.36
Non-equilibrium decay chain	1.98
total	4.526

 Taken nominal value 8.86% as input and difference to our measurement as uncertainties

systematic source	Uncertainty[%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
²¹⁴ Pb spectrum	2.03
Bin size	0.05
Xe136 abundance	1.92
Fit range	1.23
Regional weight	1.58 PA
Energy Resolution	0.58
Energy scale	0.26
¹³⁶ Xe spec. shape	0.36
Non-equilibrium decay chain	1.98
total	4.526

Final results

- ¹³⁶Xe DBD half-life measured by PandaX-4T: 2.27 \pm 0.03(stat.) \pm 0.10(syst.) \times 10²¹ year
- Comparable precision with leading results
- First such measurement from a DM detector with natural xenon
- 440 keV 2800 keV range is the widest ROI

