

Latest Results From Daya Bay

Zhiyuan Chen¹, Hongzhao Yu²

Institute of High Energy Physics Sun Yat-sen University On behalf of the Daya Bay Collaboration

High Energy Physics Branch of CPS, 11th August 2022

Reactor anti-neutrino oscillation

• Survival probability:

Daya Bay experiment

• Reduce systematic issues by performing relative measurement with Far/Near ratio 3

Antineutrino detectors (ADs)

Daya Baj

Oscillation Parameters: Improvements

• Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2022	3158	2,236,810	2,544,894	764,414	5,546,118

• Analysis:

Energy calibration

See more details in backup

- Electronics non-linearity calibrated at the channel-by-channel level
- Improved non-uniformity correction
- > New correlated background after 2017
 - Remove additional very rare PMT flashers
 - Suppress and identify untagged muon events
- Correlated background
 - New approach for determining the ⁹Li/⁸He background

Selection of \overline{v}_e Candidates

- Remove flashing PMT events
- Veto muon events
- Require 0.7 MeV $< E_{\text{prompt}} < 12$ MeV, 6 MeV $< E_{\text{delayed}} < 12$ MeV
- Neutron capture time: $1 \ \mu s < \Delta t < 200 \ \mu s$
- Multiplicity cut: select time-isolated energy pairs

	Efficiency	Correlated	Uncorrelated
Target protons	-	0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Prompt energy cut	99.8%	0.10%	0.01%
Multiplicity cut		0.02%	0.01%
Capture time cut	98.7%	0.12%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill-in	104.9%	1.00%	0.02%
Livetime	-	0.002%	0.01%
Combined	80.6%	1.93%	0.13%

See PRD 95 (2017) 072006

Detection efficiencies

Background

- Uncorrelated background
 - Accidental
- Correlated background
 - Fast neutron
 - produced outside of the AD but enters the active volume of the AD
 - ➢ ⁹Li/⁸He
 - spallation product produced by cosmic-ray muons inside the AD
 - ➢ ²⁴¹Am-¹³C
 - neutron calibration source resides inside the ACU
 - > $^{13}C(\alpha,n)^{16}O$
 - α from decay of natural radioactive isotope in the liquid scintillator
 - Residual PMT flasher

> Muon-x

Residual PMT Flashers

A typical singles event

- Removed by cutting on Kurtosis and time_PSD_local_RMS
- After rejecting residual flashers,
 - Contamination in the IBD sample is negligible
 - Retain 99.997% of the IBD candidates

A residual flasher event

Muon-x Background

- Gradual failure of PMTs or high-voltage channels in the inner water Cherenkov counter (IWS) in the water pool since January 2017
 - Reduction in muon detection efficiency
 - Muon decays and additional spallation (muon-x) in the top half of some ADs
- Lower the hit multiplicity of PMTs (nHit) in IWS from 12 to 6 to tag muons
 - Reject about 80% of muon decays
 - Extend cut on E_{prompt} from 12 MeV to 250 MeV to determine the rate and spectrum for fast neutron and muon-x

Dava Ba

Performance of Antineutrino Detectors

• IBD candidates including background (< 3%)

• Antineutrino detectors in the same hall have similar performance

IBD Rate (background subtracted)

- Side-by-side comparison
 - Measurements consistent with predictions

Errors include relative detection efficiency of 0.13%

- Correlation with operation of reactors
 - Expectation based on weekly reactor operational information
 - Measurements track expectations

Prompt-energy Spectra

Improved $\sin^2 2\theta_{13}$ and Δm^2_{32}

Present Global Landscape

• Compare Daya Bay's current results with published results

Daya Bay

Summary

- > Has acquired the largest sample of reactor antineutrinos to date
- > Obtains the world's most precise determination of $\sin^2 2\theta_{13}$
- > Provides one of the best measurements of $|\Delta m^2_{32}|$
- > Yields leading results on other topics not covered here such as
 - Search for a light sterile neutrino
 - Measurement of absolute flux and spectrum of reactor \overline{v}_e
 - Evolution of absolute reactor \overline{v}_e flux and spectrum
- > Will have more results to be presented in the future, for example:
 - Updated results on oscillation parameters with nH samples

Brief History of Onsite Operation

- Detector commissioning on 15 August 2011
- Collection of physics data began on 24 Dec 2011
- Collection of physics data ended on 12 Dec 2020
- Decommissioning: 12 Dec 2020 31 Aug 2021

Data Acquisition

• Operational statistics:

• Three physics runs:

Configuration	EH1	EH2	EH3	Start date – End date	Duration (Days)
6-AD	2	1	3	24 Dec 2011 – 28 July 2012	217
8-AD	2	2	4	19 Oct 2012 – 26 Dec 2016	1524
7-AD	1	2	4	26 Jan 2017 – 12 Dec 2020	1417
Total					3158

• Data available for analyses: ~2700 days

Non-linear Energy Response

• Due to nature of liquid scintillator (LS) and charge measurement of electronics

19

Daya Baj

Improved Nonuniformity of Energy Scale

- e Daya Bay
- Additional non-uniformity on top of already-corrected geometric nonuniformity
 - Residual effect of the Earth magnetic field
 - Dead PMTs or high-voltage supply channels
- Corrections
 - Use γ's from spallation-neutron capture on Gd and α's from natural radioactive isotopes
 - > Time dependent, referencing to the γ 's from spallation-neutron capture

• The largest additional correction is about 3%

Energy Scale

- Gain of photomultiplier tubes
 - Single-photoelectron dark noise
 - Weekly LED monitoring
- Energy calibration
 - ➢ Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
 - Spallation neutrons
 - Natural radioactivity

▲ Alpha from natural radioactivity ◇ Gamma from natural radioactivity

Relative uncertainty in energy scale: $\sim 0.2\%$

Details of IBD Selection

P = Prompt-like signal; D = Delayed-like signal; X = Non-muon signal

	Water pool muon	Vet	Veto [-2 µs, 200 µs] after NHIT > 12 in OWS or IWS				
Muon veto	AD muon	Veto [-2 µs, 1 ms] after > 20 MeV signal in AD					
	AD shower	Veto [-2 µs, 0.4 s] after > 2 GeV signal in AD					
	IWS muon veto	Veto [-2 μ s, 10 μ s] after 6 < NHIT \leq 12 in IWS					
Flasher cut		Standard, DocDE		3-7424	424 Residual, DocDB-12462		
Energy cut		0.7 ≤ P ≤ 12 MeV		6 ≤ D ≤ 12 MeV		0.7 ≤ X ≤ 20 MeV	
Decoupled Multiplicity Cut (DMC)	Decoupled Aultiplicity Cut (DMC)		One P within (-200 μs, -1 μs) && no X within (-400 μs, 200 μs) Time to last muon veto window > 400 μs				
(eme)			Time to next muon veto window > 200 μs				

■⁹Li/⁸He Background

- ⁹Li/⁸He
 - > β -n decay
 - > $\tau_{\rm Li} = 257.2 \text{ ms}, \tau_{\rm He} = 171.7 \text{ ms}$
- Perform a multi-dimensional fit using
 - Time interval after the preceding muon $(t_{\text{IBD}} t_{\mu})$
 - > Prompt energy (E_{prompt})
 - > Distance between the prompt and delayed signals (ΔR)
 - ► Low-energy ($E_{vis} < 2 \text{ GeV}$) and high-energy ($E_{vis} > 2 \text{ GeV}$) muon samples from all three halls simultaneously

Summary Table

	EH1		EI	EH2		EH3		
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\bar{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.11	2689.88	2502.816	2689.156	2689.156	2689.156	2501.531
ϵ_{μ}	0.8006	0.7973	0.8387	0.8366	0.9815	0.9815	0.9814	0.9814
$ar{\epsilon}_m$	0.9671	0.9678	0.969	0.9688	0.9693	0.9693	0.9692	0.9693
Accidentals [day-1]	7.11 ± 0.01	$\boldsymbol{6.76\pm0.01}$	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast neutron & muon-x [day-1]	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
⁹ Li, ⁸ He [AD ⁻¹ day ⁻¹]	2.97 =	± 0.53	2.09 =	± 0.36		0.25	± 0.03	
²⁴¹ Am- ¹³ C [day-1]	0.16 ± 0.07	0.13 ± 0.06	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
$^{13}C(\alpha, n)^{16}O \text{ [day-1]}$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$\bar{\nu}_e$ rate, $R_{\overline{\nu}_e}$ [day ⁻¹]	657.11 ± 0.94	685.09 ± 0.81	599.83 ± 0.65	592.07 ± 0.67	75.03 ± 0.18	75.22 ± 0.18	74.42 ± 0.18	74.94 ± 0.18

Rate-only Fitting Results

rate-only	$\sin^2 2\theta_{13}$	$\chi^2_{\rm min}$ / NDF
1-stage	$0.0853^{+0.0027}_{-0.0027}$	3.4 / 6
3-stage	$0.0854^{+0.0027}_{-0.0027}$	17.3 / 19

Error Budget

