Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector

Yue Xu Tsinghua University

中国物理学会高能物理分会第十一届全国会员代表大

会暨学术年会

8-11 August, 2022

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-040/

Introduction

• The quark model was proposed by Gell-Mann and Zweig sixty years ago

• Exotic hadrons were predicted at the same time as conventional $q\bar{q}$ mesons and qqq baryons.

Pentaquark

Exotic hadrons

- Charmonium ($c\bar{c}$) -like exotic hadrons
- The X(3872) discovered by Belle in 2003 is the first candidate for an exotic tetraquark state, followed by a series of XYZ states observed by other experiments.
- Lack observations of full-heavy tetraquarks.
- The advantage of fully-heavy tetraquarks is the non-relativistic treatments which largely simplify the calculations, and make theory-experiment comparison easier. Such calculations include lattice QCD, QCD sum rules and potential models.

XYZ states:

- X: neutral particle with $J^{PC} \neq 1^{--}$
- Y: neutral particle with $J^{PC} = 1^{--}$
- Z: charged particle

X(6900) from LHCb

• At June 2020, LHCb claimed evidence for a narrow resonance in the di-J/Psi to 4 muons spectrum at **6.9 GeV**, presumably coming from 4-charm quark state.

arXiv:2006.16957

LHCb model I: no interference	$m[X(6900)] = 6905 \pm 11 \pm 7 \text{MeV}/c^2$ $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \text{MeV}$
LHCb model II: interference	$m[X(6900)] = 6886 \pm 11 \pm 11 \text{MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{MeV}$

The ATLAS detector and data

- ATLAS (A Toroidal LHC ApparatuS) is one of the two general-purpose detectors at the Large Hadron Collider (LHC)
 - Coverage: $|\eta| < 2.5$
 - Magnetic field: 2T
- Excellent track and muon identification with the goodness of the inner detector and muon spectrometer.
- Data set: Integrated luminosity of 139 fb^{-1} @ 13 TeV in Run 2 (2015-2018).

Signal processes

- Signal process: tetraquark (TQ) $\rightarrow J/\psi + J/\psi$ or $J/\psi + \psi(2S) \rightarrow 4\mu$
- J/ψ or $\psi(2S)$ candidates are reconstructed with $J/\psi/\psi(2S) \rightarrow \mu^+\mu^-$ decay.
- At least four muons with two opposite-charge pairs are fitted to a common vertex.
- Each muon pair is revertex with a J/ψ or $\psi(2S)$ mass constraint, reaching **23 MeV** signal resolution.
- Best 4μ candidate in each event is selected using sum of χ^2/N of two charmonia and 4μ vertices

Backgrounds

- Single parton scattering (SPS): a pair of J/ψ mesons can be produced in a single interaction.
- Double parton scattering (DPS): a pair of J/ψ mesons can be produced in two separate interactions of gluons or quarks.
- SPS and DPS are estimated with SPS and DPS control regions which correct normalisations and kinematic variables:

Backgrounds

• Non-prompt backgrounds ($b\bar{b} \rightarrow J/\psi + J/\psi/\psi(2S) + X \rightarrow 4\mu$) are modelled with MC and validated with non-prompt

region.

- Other backgrounds are estimated with data-driven method:
 - Single J/ψ background
 - Non-peaking background containing no real J/ψ candidate

Event selection

- ✦ Di-muon or tri-muon triggers
- ✦ Baseline selections:
 - Two positive charged muons and two negative charged muons:
 - $p_T(\mu_1) > 4$, $p_T(\mu_2) > 4$, $p_T(\mu_3) > 3$, $p_T(\mu_4) > 3$ GeV

•
$$|\eta_{\mu_1, \mu_2, \mu_3, \mu_4}| < 2.5$$

- → J/ψ mass window: 2.94 GeV< $m_{J/\psi}$ < 3.25 GeV ; $\psi(2S)$ mass window: 3.56 < m_{ψ} < 3.80 GeV
- ➡Loose vertex cuts:
 - Vertex fit quality of 4μ candidate: $\chi^2_{4\mu}/N < 40$
 - Vertex fit quality of J/ψ and $\psi(2S)$: $\chi^2_{di-\mu}/N < 100$

Analysis regions

- Signal region (SR) is used to extract signal parameters (e.g. mass, width).
- SPS and DPS control regions (CR) are used to estimate SPS and DPS backgrounds.
- Non-prompt region is used to validate non-prompt background estimation.

SR	Tight vertex cuts:	$m_{4\mu} < 7.5$ GeV, $\Delta R < 0.25$ between charmonia 7.5 GeV $< m_{4\mu} < 12.0$ GeV 14.0 GeV $< m_{4\mu} < 25.0$ GeV			
SPS CR	$ L_{xy}^{di-\mu} < 0.3 \text{ mm}$ $L_{xy}^{4\mu} < 0.2 \text{ mm}$				
DPS CR	$\chi^2_{4\mu}/N < 3$				
Non-prompt region	Reverse vertex cuts: $\chi^2_{4\mu}/N > 6$ and $ L^{di-\mu}_{xy} > 0.4$ mm				

Fit models

• Unbinned maximum likelihood fits are performed to extract the signal parameters (e.g. mass m, width Γ)

$$\mathcal{L} = \mathcal{L}_{SR} \left(\vec{\alpha}, \vec{\beta} \right) \cdot \mathcal{L}_{CR} \left(\vec{\alpha} \right) \cdot \prod_{j=1}^{K} G \left(\alpha'_{j}; \alpha_{j}, \sigma_{j} \right)$$
• Fit regions:
• Fit SR: $m_{4\mu}^{\text{con}} < 11 \text{ GeV}$ and $\Delta R < 0.25$
• Fit CR: $m_{4\mu}^{\text{con}} < 11 \text{ GeV}$ and $\Delta R \ge 0.25$

• In di- J/ψ channel, **3-peak model** with interference among signals is considered. 2-peak model is also tested but with worse fit quality.

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes \frac{R(\alpha)}{\sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}}}$$
Resolution function

Fit models

- In $J/\psi + \psi(2S)$ channel, due to lower statistics, two models are considered.
 - Model A: the same peaks with interference observed in the di- J/ψ channel also decaying into $J/\psi + \psi(2S)$ plus a standalone peak.

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + im_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

• Model B: only one single peak

Fit regions in di- J/ψ channel

• SPS mass shape is modelled well in signal region.

- A broad structure near threshold from 6.2 to 6.8 GeV
- A narrow structure around 6.9 GeV

Fit regions in $J/\psi + \psi(2S)$ channel

• SPS mass shape is modelled well in signal region.

- A narrow structure around
 6.9 GeV
- Hint for another narrow structure around 7.2 GeV

Fit results in di- J/ψ channel

ATLAS-CONF-2022-040

- The **3rd peak** mass is consistent with the LHCb observed X(6900), with significance of **10***o*
- The broad structure at the lower mass could from other physical effects, e.g. feed-down from higher dicharmonium resonances

Extracted masses and widths (GeV)

Fit results in $J/\psi + \psi(2S)$ channel

• In model A, the 1st peak could be related to X(6900) in the di- J/ψ channel. The significance of **2nd peak** (7.2 GeV) reaches 3.2σ , also hinted by LHCb in the di- J/ψ spectrum

Systematics

Systematics (MeV)	di- J/ψ				J/ψ + ψ (2S)			
	m_0	Γ_0	m_1	Γ_1	m_2	Γ_2	m_3	Γ_3
SPS theory	7	15	4	20	5	6	<1	
SPS di-charmonium $p_{\rm T}$	<1	8	4	14	5	7	<1	
Background MC statistics	<1	8	4	14	5	7	<1	
Mass resolution	19	34	3	21	4	9	<1	4
Fit bias	43	58	10	56	11	16	13	41
Nonclosure	<1				<1			
Transfer factor					<1	16		
Presence of fourth peak	29	49	11	108	60	18		
Interference of fourth peak				29	11			
Data statistics	50	119	34	88	30	39	28	130

• Data statistics and systematics of fourth peak have the largest impact in both two channels.

Summary

- A broad structure at lower mass and a resonance around 6.9 GeV are observed in the di- J/ψ channel.
- A significant of 4.6σ is observed in the $J/\psi + \psi(2S)$ channel with a model of an enhancement at about 6.9 GeV plus a standalone peak.
- Details of the lower mass structures cannot be well resolved now.
- More data is need to understand the nature of resonances and threshold structures. Looking forward to the Run 3 data!

Thanks!

BACKUP

X(6900) from LHCb

			Mass calcula	ation with Q	CD sum rule method
Minimal quark	Current name	I(G) IP(C)	J^{PC}	Currents	$m_{cc\bar{c}\bar{c}}$ (GeV)
content	Current name	1 * , 5 * *	0++	$J_1^{0^{++}}$	6.44 ± 0.15
$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$		$J_2^{0^{++}}$	6.46 ± 0.16
$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	1+-	$J_{3\alpha}^{1^{+-}}$	6.51 ± 0.15
$car{c}uar{d}$	$X(4100)^{+}$	$I^{G} = 1^{-}$		$\frac{3\alpha}{2}$	
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	2^{++}	$J_{4lphaeta}^2$	6.51 ± 0.15
$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	0^{-+}	$J_5^{0^{-+}}$	6.84 ± 0.18
$car{c}uar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$		$J_6^{0^{-+}}$	6.85 ± 0.18
$car{c}uar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	0	$J_7^{0^{}}$	6.84 ± 0.18
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^+, \ J^{PC} = ?^{?+}$	1-+	$J_{2}^{1^{-+}}$	6.84 ± 0.18
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$		$J_{0,\alpha}^{1^{-+}}$	6.88 ± 0.18
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$		9α	
arXiv:2206.15	<u>233</u>		1	$J_{10\alpha}^{1}$	6.84 ± 0.18
				J^1_{11lpha}	6.83 ± 0.18
	<u>arXiv:2204.02649</u>				
tetraquark.					
From experiment side:					
Observation needed to be confirmed					
Properties needed to be studied					

Event selection

Signal region	SPS/DPS control region	non-prompt region		
Di-muon or tri-muon triggers,				
Opposite charged muons from the same J/ψ or $\psi(2S)$ vertex,				
Loose muon ID, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons				
$m_{J/\psi} \in \{2.94, 3.25\}$ GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ GeV,				
Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{di-\mu}/N < 100$,				
Vertex $\chi^2_{4\mu}/N < 3$,				
$L_{xy}^{4\mu} < 0.2 \text{ mm}$	Vertex $\chi^2_{4\mu}/N > 6$,			
$m_{4\mu}$ < 7.5 GeV, ΔR < 0.25 between charmonia	$\begin{vmatrix} 7.5 \text{ GeV} < m_{4\mu} < 12.0 \text{ GeV} \text{ (SPS)} \\ 14.0 \text{ GeV} < m_{4\mu} < 25.0 \text{ GeV} \text{ (DPS)} \end{vmatrix}$	$ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$		

Checks

- In the di- J/ψ channel, a two-resonance fit is also attempted, but its fit quality χ^2/N is about 70% worse than the three-resonance model.
- The fit is repeated with the mass and width of the third resonance fixed to the values obtained by LHCb model I. It is found that χ^2/N increases by about 2% in our model, and changes in the values of the fitted parameters of the other two resonances are within statistical uncertainties.
- LHCb model II is checked, but we observed a bit worse fit quality.
- The model with three interfering resonances best describes the data, the broad structure at the lower mass could result from other physical effects. One of the possibilities is feed-down from higher di-charmonium resonances.