中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Recent light hypernuclei measurements from STAR experiment

Yifei Zhang (张一飞)

University of Science and Technology of China

Collaborators: X. Dong, X. He, C. Hu, Y. Ji, X. Li, Y. Liang, T. Shao ...

August 8-11, 2022

Introduction

Review of hypernuclei measurements from STAR

Hypernuclei measurements progress in STAR BES-II

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei production in HI

Introduction

Review of hypernuclei measurements from STAR

Hypernuclei measurements progress in STAR BES-II

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei production in HI

Introduction: what and why

Marian Danysz (right) and Jerzy Pniewski (left) discovered hypernuclei in 1952

Why is hypernuclei?

- Probe hyperon-nucleon (Y-N) interactions
 Simple/light hypernuclei are cornerstones.
- Strangeness in high-density nuclear matter.
 EoS of neutron stars.

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月11日

Introduction: how

Experimentally, measurement of hypernuclei allow us to understand,

Internal structure of hypernuclei

Week decay, lifetime is close to free Λ hyperon.

Loosely bounded, binding energy, branching ratios ...

Understanding hypernuclei structure may give more constraints on the Y-N interaction

Production in high energy heavy-ion collisions production yields/mechanisms, collectivity ...

The formation of loosely bound states (how they survive) in violent heavy-ion collisions is not well understood

Introduction: RHIC BES-II program

Introduction: RHIC BES-II program

.		Evente			11.5
ar	$\sqrt{s_{NN}}$ [Gev]	Events			<u>7.7</u>
	27	555 M			<u>4.5</u>
18	3.0	258 M			<u>6.2</u>
	7.0	166 NA	202	20	<u>5.2</u>
	<u>1.2</u>	122 IVI			<u>3.9</u>
	19.6	478 M			<u>3.5</u>
	14.6	324 M			9.2
19	3.9	53 M			<u>7.2</u>
		201 14			7.7
	<u>3.2</u>	201 M			<u>3.0</u>
	<u>7.7</u>	51 M			<u>9.2</u>
			202	21	<u>11.5</u>
					<u>13.7</u>
					173

B. Dönigus, EPJA (2020) 56:280

 $\langle \rangle$ Coalescence and statistical-thermal models predict: At lower beam energies, the hypernuclei production is expected to be enhanced due to high baryon density.

Large statistics from STAR BES-II provide a great opportunity to study hypernuclei production. $\langle \rangle$

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会,2022年8月11日

89 M

7.2

Introduction

Review of hypernuclei measurements from STAR

Hypernuclei measurements progress in STAR BES-II

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei production in HI

Review of hypernuclei measurements from STAR

STAR collaboration **found the anti-hyper triton. Science 328, 58 (2010) (STAR)**

Lifetime measurement of ${}^3_\Lambda H$ Science 328, 58 (2010) (STAR) PRC 97, 054909 (2018) (STAR)

Measurement of mass difference and binding energy of ${}^3_{\Lambda}H$ and ${}^3_{\overline{\Lambda}}\overline{H}$ Nature Phys. 16 (2020) 409 (STAR)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会, 2022年8月11日

Introduction

Review of hypernuclei measurements from STAR

Hypernuclei measurements progress in STAR BES-II

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei production in HI

Hypernuclei reconstructions

Hypertriton relative branching ratio (R₃)

Improved precision on R₃

Stronger constraints on hypernuclear interaction models used to describe $^{3}_{\Lambda}\mathrm{H}$

Stronger constraints on absolute B.R.s

Lifetimes for light hypernuclei

 ${}^{3}_{\Lambda}$ H: $\tau = 221 \pm 15$ (stat.) ± 19 (syst.)[ps]

 ${}^{4}_{\Lambda}$ H: $\tau = 218 \pm 6$ (stat.) ± 13 (syst.)[ps]

 $^{4}_{\Lambda}$ He: $\tau = 229 \pm 23$ (stat.) ± 20 (syst.)[ps]

- Lifetime of light hypernuclei ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ are shorter than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ)
- Consistent with former measurements (within 2.5 σ for $^{3}_{\Lambda}H$, $^{4}_{\Lambda}H$)
- Results consistent with model calculations including pion FSI and calculations under Λd 2-body picture within 1σ
- $^{3}_{\Lambda}$ ⁴_H, ⁴_AH results with improved precision provide tighter constraints on models

$\textbf{B}_{\Lambda} \text{ and } \Delta \textbf{B}_{\Lambda} \text{ of } {}^{4}_{\Lambda} \text{H} \text{ and } {}^{4}_{\Lambda} \text{He}$

- ♦ Λ binding energies(B_{Λ}) of $^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He and their differences Δ B_{Λ} ♦ For ground states, Δ B $^{4}_{\Lambda}(0^{+}) = B_{\Lambda}(^{4}_{\Lambda}$ He,0⁺) - $B_{\Lambda}(^{4}_{\Lambda}$ H,0⁺)
 - \diamondsuit For excited states, the results are obtained from the $\gamma\text{-ray}$ transition energies E_{γ}

$$\begin{split} &B_{\Lambda}^{4}({}_{\Lambda}^{4}\text{He}/\text{H},1^{+}) = B_{\Lambda}({}_{\Lambda}^{4}\text{He}/\text{H},0^{+}) - E_{\gamma}({}_{\Lambda}^{4}\text{He}/\text{H}) \\ &\Delta B_{\Lambda}^{4}(1^{+}) = B_{\Lambda}({}_{\Lambda}^{4}\text{He},1^{+}) - B_{\Lambda}({}_{\Lambda}^{4}\text{H},1^{+}) \end{split}$$

- $\Diamond \Lambda$ binding-energy difference
- \rightarrow Study charge symmetry breaking (CSB) effect in A = 4 hypernuclei
- Differences are comparable large values and have opposite sign in 0⁺ and 1⁺ states
 - Consistent with the calculation including a CSB effect within uncertainties.

Introduction

Review of hypernuclei measurements from STAR

Hypernuclei measurements progress in STAR BES-II

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei production in HI

Light hypernuclei production yields at 3 GeV

- First measurement of dN/dy of light hypernuclei in heavy-ion collisions.
- Different trends in the ${}^{4}_{\Lambda}H$ rapidity distributions in central (0-10%) and semi-central (10-50%) collisions.
- Transport model (JAM) with coalescence reproduces trends of $^{4}_{\Lambda}$ H but failed to describe $^{3}_{\Lambda}$ H.

Comparison to Λ and light nuclei at 3 GeV

Thermal model: A. Andronic et al, PLB 697 (2011) 203.

Thermal/coalescence models predict approx. exponential dependence of yields/(2J+1) vs A.

• ${}^{4}_{\Lambda}$ H lies a factor of 6 above exponential fit to (Λ , ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H).

Non-monotonic behavior in hyper-to-light-nuclei ratio vs A observed. Thermal model calculations including from excited ⁴_ΛH^{*} feed-down show a similar trend.

Energy dependence of hypernuclei production in HIC

- $^{3}_{\Lambda}H$ yield at mid-rapidity increases from 2.76 TeV to 3 GeV
 - · Driven by increase in baryon density at low energies
 - Thermal model reproduces the trend, but slightly overestimate the yields of ${}^3_{\Lambda}H$ at 19.6 and 27 GeV. Meanwhile, ${}^4_{\Lambda}H$ is underestimated.
- Coalescence(DCM) cannot describe ³_AH, ⁴_AH yields using same coalescence parameters, whereas coalescence(JAM) using different parameters approximately can
- \clubsuit PHQMD describes $^4_\Lambda H$ at 3 GeV, but slightly overestimates $^3_\Lambda H$
- Hybrid URQMD overestimates both yields at 3 GeV by an order of magnitude

Provide first constrains for hypernuclei production models in the high-baryon-density region

Ratio of hypernuclei yield to light nuclei (S_A)

Light hypernuclei directed flow at 3 GeV

First measurements of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ directed flow (v₁) from 5 - 40% centrality

 v_1 slopes of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ seem to follow a mass number scaling.

→ Imply coalescence is a dominant process for hypernuclei formation in heavy-ion collisions

Summary

STAR BES-II provides a unique opportunity to study hypernuclei, especially at high-baryon-density region $\Im_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$ lifetimes measured with improved precision

- \clubsuit Relative branching ratio R_3 of ${}^3_{\Lambda}H$ with improved precision
 - Precision lifetime and R_3 provide stronger constraints on hyper nuclear interaction models
- Λ binding-energy difference between ${}^4_{\Lambda}H$ and ${}^4_{\Lambda}He$
 - Hint of CSB effect at A=4
- \clubsuit First measurement of $^3_\Lambda H$ and $^4_\Lambda H$ collectivity v_1
 - Mass number scaling is observed for the light hypernuclei → qualitatively consistent with coalescence

Sirst measurement of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ dN/dy vs y in heavy-ion collisions.

- Provide first constraints to hypernuclei production models @ high $\mu_{
m B}$

Outlook: High baryon density frontier

Thanks for your attention !

