

Characterization of the PMT System in the TRIDENT Pathfinder Experiment

Fuyudi Zhang, Ziping Ye, Fan Hu, Donglian, Xu TRIDENT Collaboration

2022.08.11

- 01. Neutrino Telescope
- 02. TRIDENT Pathfinder Experiment
- 03. PMT System of T-REX

04. Lab Calibration at Low Temperature
05. PMT Data Analysis
06. Outlook and Summary

PART 01

Neutrino Astronomy and Telescopes

TSUNG-DAO LEE INSTITUTE

Neutrino Astronomy and Telescopes

- High energy neutrinos as astronomical messenger
- Neutrino telescopes in the world

Neutrino Astronomy and Telescopes

- High energy neutrinos as astronomical messenger
- Neutrino telescopes in the world

PART 02

TRIDENT Pathfinder Experiment

TSUNG-DAO LEE INSTITUTE

The tRopIcal Deep-sea Neutrino Telescope

- Selected Site: near 114.0°E, 17.4°N
 - Abyssal plain
 - full depth ~ 3.5 km
 - 180 km away from Yongxing Island

The tRopIcal Deep-sea Neutrino Telescope

- Selected Site: near 114.0°E, 17.4°N
 - Abyssal plain
 - full depth ~ 3.5 km
 - 180 km away from Yongxing Island
- **TRIDENT Pathfinder Experiment**
 - carried out in 2021.09
 - *in-situ* measurements of optical properties

• T-REX

- Two measurement systems in Light
 Detection Modules:
 PMT and *Camera* See W. Tian's poster at Session IX(5): Particle Detector Technology
- Collecting data for ~ 2h
- (10, 50, 10) min for (405, 450, 525) nm pulsing LEDs, respectively
- Three 3-inch PMTs in each module
- PMTs are externally triggered in 10 kHz

PART 03

PMT System of T-REX

TSUNG-DAO LEE INSTITUTE

• HZC Photonics XP72B22 PMT

QE @ 404 nm	28%
Dark Noise	2 kHz, max
Gain	107
Supply Voltage	1500V, max

Typical characteristics of XP72B22 PMT given by datasheet

• PMT Selection

- HZC Photonics XP72B22 PMT
- A sample of 50 PMTs were tested at USTC (by Zebo Tang's group)

• PMT Selection

- HZC Photonics XP72B22 PMT
- A sample of 50 PMTs were tested at USTC (by Zebo Tang's group)

PART 04

Lab Calibration at a Low Temperature

TSUNG-DAO LEE INSTITUTE

Calibration Setup

- Temperature controlled at ~ 2 degree
- To measure: LED brightness ratio, relative photon detection efficiencies, photon arrival time distribution in air.

Results from Lab Calibration

Photon Arrival Time Distribution in Air

- Describe the LED pulsing profile & PMT response
- Used to construct model to fit optical properties (absorption/scattering length) of the sea water

PMT Data Analysis

TSUNG-DAO LEE INSTITUTE

Decoding optical properties of sea water

- Measurement strategy:
 - LEDs pulse per 0.1ms
 - ADC samples per 4 ns
 - 1000 ns waveform

Decoding optical properties of sea water

• Reconstruct photon arrival time distribution in sea-water (3 wavelengths, 6 PMT distributions for each wavelength)

one pair of PMTs measured photon arrival time distribution @ 450 nm

- Reconstruct photon arrival time distribution in sea-water (3 wavelengths, 6 PMT distributions for each wavelength)
- Fitting experimental data with constructed model:

- Reconstruct photon arrival time distribution in sea-water (3 wavelengths, 6 PMT distributions for each wavelength)
- Fitting experimental data with constructed model:

$$T_{\text{arrival}} = T_{\text{LED emission}} \otimes T_{\text{photon propagation}} \otimes T_{\text{PMT response}}$$

Emission from propagation in the sea water Detection by PMTs pulsing LEDs

• Chi Square Test

$$\chi^{2} = \sum_{i=1}^{N} \frac{(D_{i} - M_{i} - \sum_{k=1}^{K} \beta_{ki} \cdot r_{k})^{2}}{\sigma_{i}^{2}} + \sum_{k=1}^{K} r_{k}^{2}$$

Absorption Length

Scattering Length

"海铃探路者"中的PMT系统 | 第十一届全国高能物理年会 | 2022.08.11

Best fitted model@450nm

PART 06

Outlook and Summary

TSUNG-DAO LEE INSTITUTE

Future

- Envisioned full detector:
 - volume $\sim 8 \text{ km}^3$
 - 1211 strings
 - 30 hDOMs per string

•

- Envisioned full detector:
 - volume of 7.5 km³
 - 1211 strings
 - 30 hDOMs per string
 - hDOM = PMT + SiPM
 - in early 2030s

F. Hu, Z. Li, D. Xu, PoS ICRC2021 (2021) 1043

Summary and Outlook

- TRIDENT: envisioned neutrino telescope in South China Sea
- TRIDENT pathfinder experiment: measure optical properties at the selected site
- PMT System of T-REX: three 3-inch PMTs & pulsing LEDs@(405, 450, 525)nm

Summary and Outlook

- TRIDENT: envisioned neutrino telescope in South China Sea
- TRIDENT pathfinder experiment: measure optical properties at the selected site
- PMT System of T-REX: three 3-inch PMTs & pulsing LEDs@(405, 450, 525)nm
- Further PMT selection among HZC Photonics, North Night Version and Hamamatsu
- Pilot project (2022-2026): 3 strings

Thank You

33

K40 Simulation

- abundance of K40: 10.78 ± 0.21 Bq/kg (Measured by PandaX Team at China Jingping Underground Laboratory)
- contribute to 4 kHz trigger rate per PMT

Time [ns]

Chi Square Test

$$\chi^{2} = \sum_{i=1}^{N} \frac{(D_{i} - M_{i} - \sum_{k=1}^{K} \beta_{ki} \cdot r_{k})^{2}}{\sigma_{i}^{2}} + \sum_{k=1}^{K} r_{k}^{2}$$

- uncorrelated uncertainty σ_i includes:
 - statistical fluctuation
 - electronic noise
 - uncertainty in the LED pulse profile and PMT time response
- β_{ki} is the contribution from the k^{th} correlated uncertainty, includes:
 - fluctuations in LED brightness
 - PMT gains
 - PMT detection efficiencies

Reference: Phys.Rev.D65:014012,2001