Study of nucleon structure and hadron physics at EicC

Aiqiang Guo (Institute of Modern Physics, Chinese Academy of Sciences)

On behalf of the EicC working group

Our understanding on nucleon

1970s 1980s/2000s

Now

Our understanding on nucleon

1970s

1980s/2000s

Now

Origin of nucleon spin

Origin of nucleon mass

EicC project introduction

Electron Ion Collider in China,

Highlighted physics topics

Spin-dependent nucleon structure: 1D, 3D

- Polarized structure function
- > Spin-dependent TMDs

Exotic states with c/cbar, b/bbar

- $> J/\psi$ and Υ production at EicC
- Exotic states production at EicC

Spin decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + \Delta G(\mu) + L_{Q+G}(\mu)$$
,

quarks gluon orbital angular momenta

Spin decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + \Delta G(\mu) + L_{Q+G}(\mu) ,$$
quarks gluon orbital angular momenta

- By DIS, we can measure the nucleon parton distribution function in momentum space:
 F(x)
- Similarly, to measure the ΔΣ(μ), we need to know the parton distribution function in spin space: g(x)

Flavor decompositions

• With pure γ exchange in inclusive DIS:

$$g_1^P = \frac{1}{2} \left(\frac{4}{9} (\Delta u + \Delta \bar{u}) + \frac{1}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$
$$g_1^n = \frac{1}{2} \left(\frac{1}{9} (\Delta u + \Delta \bar{u}) + \frac{4}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$

- Assumption: SU(3) flavor symmetry
 - \checkmark Additional inputs from β -decay of neutron and hyperons

$$\Delta u + \Delta d - 2 \Delta s$$
 $\Delta u + \Delta d$

A way out:

SIDIS measurements: with the initial quark flavor tagged Fragmentation Functions needed

SIDIS processes for flavor decompositions

Spin of the nucleon-helicity distribution

The TMDs

Spin-dependent TMDs (Leading-Twist)

*s*_L, *s*_T: Target Polarization; λ_e: Beam Polarization Target SSA, beam-target DSA measurements

Spin structure of the nucleon-TMDs

u/d Sivers EicC vs world data

LO analysis

EicC SIDS data:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV X 20 GeV
- eHe-3: 3.5 GeV X 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- ➢ Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

EicC, precise measurements.

Green: Current accuracy Red: stat. error only Blue: sys. Error included

d quark

0.5

 sea quark Sivers function dynamically generated via Spin dependent odderon

x=0.16

x=0.08

x=0.04

x=0.02

x=0.01

x=0.005

1.5

Quark transverse momentum kr (GeV)

leads to a unique predication for s-quark: quark and anitquark Sivers functions flip sign

H. Dong, D. X. Zheng, J. Zhou, 2018

Quark transverse momentum k_T (GeV)

Study of quarkonium at EicC

- Study the exotic states from **new production mechanism** is crucial to pin down their nature
- EicC as a unique electron-ion collider has many advantages
 - Larger cross section compared to e+e- collision
 - Smaller background compared to pp and pp collisions
 - Polarized beams: pin down the quantum numbers JP
 - > No triangle singularity

B decays

Z1(4050)

Z₂(4250)

Zc(4200)

Ze(4240)

Y(4274)

X(4500)

X(4700)

Y(3940)

Y(4140)

= X(3915)

 $Z(3930) = \chi_{e2}(2P)$

Z_c(4430)

Lebed, Mitchell, Swanson, Heavy-Quark QCD Exotica,

e+e- annihilation

Y(4230)

Y(4260)

Y(4360)

Zc(3900)

Ze(4020)

Zc(4055)

X(3872)

X(4350)

PPNP 93, 143 (2017)

J/Psi production at EicC

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Upsilon production at EicC

For W=15-20 GeV,

• Photoproduction: $\sigma(\gamma p \rightarrow \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered),

 $\sigma(\gamma p \rightarrow b \overline{b} X)$ is about two orders higher

- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$;

Exotic states production at EicC

• Cross section estimates for exclusive reactions assuming VMD (highly model-dependent)

Estimated events for EicC (50 /fb)

Exotic states	Production/decay processes	Detection efficiency	Expected events
$P_c(4312)$	$ep \rightarrow eP_c(4312)$ $P_c(4312) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	${\sim}30\%$	15 - 1450
$P_c(4440)$	$ep \rightarrow eP_c(4440)$ $P_c(4440) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 30\%$	20-2200
$P_{c}(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	10-650
$P_b(\text{narrow})$	$\begin{split} ep &\to eP_b(\text{narrow}) \\ P_b(\text{narrow}) &\to p\Upsilon \\ &\Upsilon &\to l^+l^- \end{split}$	$\sim 30\%$	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+ l^-$	$\sim\!\!30\%$	0-200
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 50\%$	0-90
$Z_c(3900)^+$	$ep \rightarrow eZ_c(3900)^+ n$ $Z_c^+(3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	$\sim 60\%$	90-9300

Summary

- EicC is a critical facility to study the nucleon structure and quarkonium
 - ➢ Polarized structure function
 - ➤Spin-dependent TMDs
 - $\gg J/\psi$, Υ and exotic states production
- Detector R&Ds are ongoing \rightarrow CDR in 2023
- More physics topics are under study and development

Backup

Electron Ion Collider in China...Huizhou(惠州) in Guangdong province

Detector simulations---an example

Tracking with all-silicon or Si+MPGD design

Detector simulations---an example

Tracking with all-silicon or Si+MPGD design

See a video at: http://eicug.org/

Kinematic region VS physics

Gluon + sea quarks

• Different x \rightarrow different picture

- Broad Q² coverage :
 - QCD evolution
 - ➢ Non-perturbative → perturbative

Valence quarks

Lepton-Nucleon Scatterings

QED probe is clean

- $\alpha_{FM} \sim 1/137$ with broad Q coverage
- One-photon exchange approximation: ~1% accuracy
- Detection scale is determined by Q²: 1GeV² ~ nucleon size

Observe scattered electron/muon Observe current jet/hadron Observe remnant jet/hadron as well

[1] \rightarrow inclusive \rightarrow semi-inclusive [1]+[2] \rightarrow exclusive [1]+[2]+[3]

High Intensity heavy-ion Accelerator Facility (HIAF)

HIAF total investment: 2.5 billion RMB (Funded)

EicC parameters

- EicC covers the kinematic region between JLab experiments and US-EIC
- EicC complements the ongoing scientific programs at JLab and future EIC project
- EicC focuses on moderate x and sea-quark region

Separation of Collins, Sivers and Pretzelosity through azimuthal angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

UT: **U**npolarized beam + **T**ransversely polarized target

$$\begin{split} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} & \rightarrow \text{TMD: Transversity} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 & \rightarrow \text{TMD: Sivers} \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} &\rightarrow \text{TMD: Pretzelosity} \end{split}$$

 ϕ_h

hadron plans

 P_{l}

sTGC detector

Detector R&Ds

Clean rooms of ISO6 and ISO7 (in total of 200 m²) for detector assembling

ALICE style ITS2 MAPS pixel detector

 25cm x 25 cm
Micromegas mass production

1m x 0.5 m GEM (self-stretching)

Shashlyk and W-powder+ScFi EMCal

DIRC prototype

