

R&D on thin-gap RPC towards production for ATLAS Phase-2 upgrade

Quanyin Li (University of Science and Technology of China)

On Behalf of the ATLAS Chinese Cluster

(USTC-SDU-SJTU)

2022.08.10

高能物理大会, 08/08/2022-08/11/2022

Introduction: ATLAS RPC Phase II Upgrade

➢ Problem of current RPC in ATLAS

- Exceed their service time (10 years @ LHC)
- Rate capability limited: 20 Hz/cm²
- Work under lower voltage \rightarrow 15-35% eff. Lost

Status: Nearly finish the FDR. Prepare for the mass production.

Mass production:

- Preparation of readout panel production
- Test system (DAQ) preparation

RPC R&D:

- Double-end readout method
- Simulation of signal transmission
- New design of RPC

High-ŋ

2022/08/10

sMDTs

 \succ The solution

Mass production

Readout panel production in upgrade

- Production of RPC components:
- Gas gap: General Technic (GT) etc.
- Readout panel: USTC-SJTU-SDU etc.
- Electronics: Roma II etc.
- Mechanism: MPI etc.
- ➢ In the ATLAS RPC Phase II upgrade, ~1/2 of all the readout panels will be produced in China.
- Honeycomb paper will be used as medium instead of foam.
- ➤ Based on a marble platform and vacuum system.

Production process of readout panel

- 1. Put the glue on the surface of PCB strip board or copper layer board.
- Put the board on the marble platform and place the honeycomb paper core on the it.
- 3. Coat the system with vacuum bag.
- 4. Open the vacuum system for uniform pressure.
- 5. At least 6 hours for the solidification of glue.
- 6. Re-do 1-5 for the other side of the panel.
- 7. One panel completed.

2022/08/10

QA&QC of readout panel

Requirement of flatness:

Max-min<100 um(in 10cm*10cm)

Measurement system:

- 1.2 m * 2.6 m at most.
- Flatness of table: +-20 µm
- Auto trigger: every 100 µs

Match the requirement of Phase II upgrade.

Gantry on the optical table with laser measurement system.

2d mesurements text

DAQ for mass production

DAQ for the mass production QA&QC.

- > TDC
- Designed by USTC.
- Comparison with CAEN v1190:
 - 1. Better time resolution ~70 ps (1190: ~100 ps)
 - More channels 128 chs*boards (1190: 128 chs)
 - 3. Small dead time: ~3 ns (1190: 5 ns)
- > Trigger system:
- Large area scintillators trigger system design by SDU
- Trigger region: 2000mm * 1300 mm

PXI crate

2022/08/10

Monitoring system for mass production

- Motivation: monitor the gas flow, temperature, humidity, current of a multi-RPC system
- \succ Four gas gaps at most.
- Inlet and outlet for each channel.
- ➢ Real-time monitor and recorder.

Hardware

2022/08/10

RPC R&D

Double-end readout method

2022/08/10

Validation of double-end readout method with real phase II electronics

- ➢ Electronics:
 - The real electronics with pre-amplifier, discriminator and signal convertor in a chip which will be used in RPC Phase II upgrade
- > Differences with previous results:
 - Digital signal only with time of leading edge and trailing edge.
 - Length of strips: 2 meters

Results

- Reconstructed position $x' = \frac{\Delta T bias}{2/v}$, $(\Delta T = T_{End0}^{Leading} T_{End1}^{Leading})$
- Reference position *x* given as the center of the reference strip
- Position difference x x'

$$\sigma(x - x') = \sqrt{\sigma(x)^2 + \sigma(x')^2}$$

$$\sigma(x - x') = \sqrt{\sigma(x')^2 + \frac{2.7^2}{12}}$$

- The $\sigma(x')$ for the four center strips:
 - 1.24, 1.32, 1.26, 1.39 *cm*
- Requirement of Phase II upgrade: < 2 cm
- The result match the requirement of RPC Phase II upgrade.

Simulation of signal transmission

Motivation:

- Large cluster size and crosstalk signal were observed in the RPC beam test (dominated by graphite layer)
- One solution: Add ground wires between two strips
- Study the various phenomena during the signal transmission with software simulation
 - Fundamental formulae:

$$\frac{d^2}{dz^2}\vec{V}(z,t) = \hat{L}\hat{C}\frac{d^2}{dt^2}\vec{V}(z,t)$$

- $\succ \hat{C}, \hat{L}$: matrices of capacitance and inductance
 - Given by Maxwell

$$\frac{d^2}{dz^2}\vec{I}(z,t) = \hat{C}\hat{L}\frac{d^2}{dt^2}\vec{I}(z,t)$$

$$\succ \vec{V}(z,t), \vec{I}(z,t): \text{ vectors of signal}$$

- $\vec{V} = \hat{Z}\vec{I}, \hat{Z}$ impedance matrix
- Solved using Mathematica

Simulation Results

Comparison between strip-strip model and strip-

ground wire-strip model:

- ➢ Setup:
- 27 mm pitch (25 mm strip + 2 mm spacing)
- 0.8 mm guard strip
- 1 m transmission distance
- Guard strip matching resistor $100 \,\Omega$
- ➤ Analysis:
- Inter-strip capacitance drop: 13.3 pF/m \rightarrow 7.1 pF/m
- Crosstalk amplitude: $6.1\% \rightarrow 4.9\%$
- The effect is small, but this simulation will provide guidance for the optimization of strips in the future.

Optimize Gas Chamber Design

- Gas flow simulation with difference design of spacers (linear and shifted.)
- \blacktriangleright Decrease the number of spacers by 24%.
- ▶ Improve the uniformity of gas flow and electric field.

PUBLISHED: <u>2021 JINST **16** P12022</u>

- Systems of readout panel production and flatness measurement have been built.
- ➤ Readout panel with very good quality could be produced locally.
- > Test system (DAQ, monitoring) for mass production has been built.
- > Double-end readout method has been preliminarily validated.
- > Simulation of signal transmission has been performed.
- ≻ New design of RPC has been studied.

LHC, ATLAS and RPC

The Large Hadron Collider (LHC)

- > The most power full accelerator and collider
- Proton-proton collision, center-of-mass energy 13 TeV
- ➤ Four large detectors: ATLAS, CMS, LHCb和ALICE.

ATLAS detector:

- One od the two general used detectors in the LHC.
- Collect the data of proton-proton collision.
- Searching target: Higgs, extra dimension, SUSY, dark

