

Design and Prototype Test of the Homogeneous Crystal EMC for STCF

ZEKUN JIA

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

(ON BEHALF OF THE STCF EMC WORKING GROUP)

Outline

Introduction to STCF EMC

Review of the Progress in Concept Design

Key Technology Research

Introduction to STCF EMC One Slide about STCF

Super Tau-Charm Facility: A post-BEPCII HEP project in China

- High luminosity
- Wider energy range
- Beam polarization

•••••

Accelerator Parameters	Phase 1	Phase 2	
Circumference/m	~600	~600	
Beam Energy Range/GeV	1-3.5	1-3.5	
Collision Angle/mrad	60	60	
Luminosity/ ×10 ³⁵ cm ⁻² s ⁻¹	>0.5	~1.0	
Beam Polarization	No	Yes	
Large Piwinski angle Collision +Crab Waist			

Introduction to STCF EMC Overview of STCF EMC

Introduction to STCF EMC Challenges in EMC Design and Operation

Review of the Progress in Concept Design EMC Baseline Design & Performance

- Unit size
 - $15X_0$ length • $\sim 1 R_M$ radius

High Q.E. APD & Fast CSA Electronics

- Hamamatsu S8664 APD x4
- Shaping time = 100 ns
- parallel JFET as input stage

Fast and Radiation Hard Crystal (pCsl) • 30 ns decay time

- Cost-effective
- >10 krad tolerance

- Unit Cosmic Ray Test
- High reflectance Teflon
- L.Y. = 155 p.e./MeV
- Equivalent Noise Energy = 1.2 MeV

Critical Input for Optimization !

Review of the Progress in Concept Design EMC Optimization in Simulation

EMC performance study in OSCAR

- ✓ Geometry construction in DD4hep
- ✓ Geant4 simulation
 - ✓ Electronics response
 - ✓ Light collection uniformity
 - ✓ Spike signal on APD
- ✓ Energy & position reconstruction
- ✓ Energy & position calibration

Parameter optimization

- ✓ Package thickness
- ✓ Unit radius & length
- ✓Amount of inner substance

Simulation result fulfills energy & position measurement requirements @ 1GeV photon

More details in <u>Yong's talk</u> at the 13th National Conference on Particle Physics

Review of the Progress in Concept Design EMC Optimization in Simulation

Time resolution study in simulation

- Shower propagation & light intensity fluctuation
- Geant4 + Optical simulation
- Emulate the Leading Edge Discriminator in C++

Only contribute 65 ps to time resolution@ 1GeV photon

Pile-up validation

- Background sampling & waveform generation implemented into simulation
- Use waveform fit to mitigate the influence of pile-up (One pulse fit & MultiFit)*

Review of the Progress in Concept Design EMC Optimization in Simulation

Things seem great for high energy photon!

However...

The reduction of ENE is crucial to EMC performance at low energy!

Electronics Parameters Study

Amplitude: $CR - (RC)^2$ shaping circuit

3 parallel JFET as input stage

Detailed noise analysis and parameter optimization

- ✓ Number of shaping integrators
- ✓ Shaping time
- ✓JFET number

JINST 15 C09002

Time: CSA + FPGA based waveform fit

Comprehensive theory study on time resolution

- Leading edge timing VS waveform fit
- Parameter optimization
 - ✓ Feedback capacitor
 - Bandwidth of operational amplifier
 - ✓ ADC sampling rate

JINST 17 P02034

Time resolution better than 200 ps @ 1GeV !

More details in Laifu's talk at the 13th National Conference on Particle Physics

Review of the Progress in Concept Design Electronics Parameters Study

The optimal electronics performance is obtained

Remaining issues:

- Improve L.Y. to further reduce ENE
- On the demand of neutral trigger & event timing
 - $^{\circ}$ Take J/ψ decay as example
 - The maximum photon energy deposition is 250 MeV on average
 - Need a fast, accurate trigger system focusing on O(100) MeV energy region ($\sigma_T > 2ns @ 0.1 GeV$ at present)

Key Technology Research Light Yield Improvement

Light held improvement

- Optical simulation of light propagation
 - Emission spectrum
 - Absorption length
 - Package reflectance
- APD Q.E.
- ✓ Transmittance of UV component
- × APD Q.E. on UV component

Idea: high performance WaveLength Shifter on crystal surface

---- Shift UV component into high transmittance wavelength **at early stage**

Key Technology Research Light Yield Improvement

Simulation result is great

Experiment validation

- Coating WLS on Teflon with Mayer Bar
- Effective but not as excellent as simulation
- Need to further improve the WLS occupancy in Teflon (According to SEM)

Cotum	LY (photons / MeV)			
Secup	Simulation		Experiment	
W/o WLS	145.6		144	1 1 E
With WLS	322	X Z.Z	223	X 1.5

Radiation hardness test on WLS

• No performance reduction up to 100 krad

Key Technology Research

Electronics System for Prototype Array test

Compact 10-channel BEE

- 125M sampling rate
- Full digital signal processing (Digital filter + waveform fit)
- Optimized resource occupancy in FPGA
- Performance validation finished

LED based pile-up validation system

- To be used for prototype beam test
- Background generator: AWG + LED driver
- Consistent with simulation result

Key Technology Research FPGA based on-board Trigger Method

Waveform fit not applicable for trigger

Inspired by self correlation method

Propose a **differential** self correlation method for **fast event timing**

 For a template waveform T_i and a signal S_i, differential self correlation coefficient is defined as:

•
$$\mathcal{W} = \sum_i (T_i - T_{i-1})(S_i - S_{i-1})/T_i \cdot S_i$$

• $T_{offset,exp} = (100 - \sum_{i=4}^7 T_{offset}(\mathcal{W}_i))/4$

Advantages:

- Low FPGA resource occupancy
- Low threshold & high accuracy
- No stack & small delay
- Robust to pile-up

Summary

- STCF EMC: a multi purpose calorimeter under challenging operation environment
 - High event rate, high radiation dose, high beam background
 - Energy & position measurement, particle identification, trigger & event timing ...
- The baseline design and parameter optimization finished for both detector & electronics

- Recent technical design highlights
 - WLS enhanced unit
 - Significant improvement in light yield
 - Good radiation hardness
 - Electronics System for Prototype Array test
 - Compact BEE design & test
 - LED based pile-up validation system
 - FPGA based on-board Trigger Method
 - Proof of concept finished feasible for neutral event trigger
 - More efforts on validation needed

BACKUP

ZEKUN JIA (ZKJIA@MAIL.USTC.EDU.CN)

Introduction to STCF EMC

Energy distribution of background photons

Table of the crystal properties

Scintillator	Density	Radiation Length	Decay time	Emission Peak	Relative Light Yield	Radiation Hardness
	g/cm^3	cm	ns	nm		
BGO	7.13	1.12	300	480	21	Bad
BaF2	4.89	2.03	650(s)	300	36	Good
			0.6(f)	220	4.1	
Csl(pure)	4.51	1.86	30(s)	310	3.6	Good
			6(f)		1.1	
PbWO4	8.3	0.89	30(s)	425	0.3	Bad
			10(f)	420	0.077	
LYSO	7.1	1.14	45	420	75	Very Good
GSO	6.71	1.38	600	430	3	Not too bad
			56	350	30	

Energy reconstruction procedure:

EMC in OSCAR

- Unit length
 - 15X₀ enough to guarantee linearity
- End face size
 - For 1.5GeV π^0 , the minimum angle is about 10°, which require the end face size is not greater than $6 \times 6 \ cm^2$

Electronics optimization:

6875

 0.6^{4}

4062.5

Key Technology Research Light Yield Improvement

Key Technology Research Light Yield Improvement

Experiment date	Point Position	Accumulated dose (rad)
0419 (9-11)	362	~700
0420 (9-11)	362	10 700
0420 (15-17)	123	89 700
0421 (9-15)	123	326 700
0422 (9-17)	81	922 700

Key Technology Research Electronics System for Prototype Array test

Resource	Utilization	Available	Utilization
LUT	9364	101400	9.23
LUTRAM	11	35000	0.03
FF	7651	202800	3.77
BRAM	58	325	17.85
DSP	120	600	20.00
ю	174	285	61.05
BUFG	17	32	53.13
MMCM	1	8	12.50

ZEKUN JIA (ZKJIA@MAIL.USTC.EDU.CN)

Key Technology Research Electronics System for Prototype Array test

Energy spectrum under pile-up obtained from experiment and simulation

