

Studies of $\gamma \gamma \rightarrow \gamma \psi(2S)$ and $e^+e^- \rightarrow \eta \phi$ via ISR at Belle

朱文静 复旦大学,上海

中国物理学会高能物理分会 第十一届全国会员代表大会暨学术年会 2022.08.10,大连

1 Study of $\gamma\gamma \rightarrow \gamma\psi(2S)$

Phys. Rev. D 105, 112011 (2022)

Motivation

- More than two dozen new resonances that are dubbed as X, Y or Z states have been found above the DD threshold since Belle observed the X(3872) in B → Kπ⁺π⁻J/ψ [Phys. Rev. Lett. 91, 262001(2003)].
- Many puzzles arise from these XYZ states, and one of them concerns the candidates for P-wave triplet states near 3.9 GeV/c².
- The Z(3930) was discovered by Belle in the process $\gamma\gamma \rightarrow D\overline{D}$, and the angular distribution was used to identify it as the $\chi_{c2}(2P)$ state. [PRL 96, 082003 (2006)] The X(3915) was discovered by both Belle and BABAR favored the $J^{PC} = 0^{++}$.[PRL 104, 092001 (2010)]
- Both 0⁺⁺ and 2⁺⁺ states can be produced in two-photon collisions and can decay to $\gamma\psi(2S)$ via E_1 transition. The partial widths are expected to be $\Gamma(\chi_{c0}(2P) \rightarrow \gamma\psi(2S)) \approx 135 \text{ keV}$ and $\Gamma(\chi_{c2} \rightarrow \gamma\psi(2S)) \approx 207 \text{keV}$.

J/ψ and $\psi(2S)$ reconstructions

- Fitting functions: A Gaussian function for $J/\psi(\psi(2S))$ signals, 1st-order polynominal for background
- Mass resolution: $\sigma_{J/\psi} = 11.0 \pm 0.6 \text{ MeV}/c^2$, $\sigma_{\psi(2S)} = 2.80 \pm 0.21 \text{MeV}/c^2$ M $(\pi^+\pi^-J/\psi) = M(\pi^+\pi^-l^+l^-) - M(l^+l^-) + m_{J/\psi}$ to improve $\psi(2S)$ mass resolution

□ Signal regions : $|M_{l^+l^-} - m_{J/\psi}| < 4\sigma_{J/\psi}(\sigma_{J/\psi} \equiv 11.0 \text{ MeV}/c^2)$

$$\begin{split} \left| M_{\pi^{+}\pi^{-}J/\psi} - m_{\psi(2S)} \right| < 2.5\sigma_{\psi(2S)}(\sigma_{\psi(2S)} \equiv 2.8 \text{MeV}/c^{2}) \\ \blacksquare \text{ Sideband region} : \left| M_{\pi^{+}\pi^{-}J/\psi} - m_{\psi(2S)} \pm 9\sigma_{\psi(2S)} \right| < 3.75\sigma_{\psi(2S)} \end{split}$$

Optimization of selection criteria

• The background is dominated by $e^+e^- \rightarrow \psi(2S)$ via ISR

- For two-photon collision events, $M^2_{rec}(\gamma\psi(2S))$ would be large.
- For ISR events, $M^2_{rec}(\gamma\psi(2S))$ is around zero.
- $M^2_{rec}(\gamma \psi(2S)) > 10 (GeV/c^2)^2$ to remove most ISR events

- Optimize the selections of $P_t^*(\psi(2S))$ and $P_t^*(\gamma\psi(2S))$ based on the Punzi figure of
 - merit(FOM), defined as FOM $\equiv \frac{\varepsilon(t)}{\frac{a}{2} + \sqrt{N_{bkg(t)}}}$

 $P_t^*(\psi(2S))$ >0.1GeV/c, $P_t^*(\gamma\psi(2S))$ <0.2 GeV/c

Mass distribution of $\gamma\psi(2S)$ and two structures

Two excesses around 3.92 and 4.02 GeV/ c^2

• Fit function: $f_{sum} = f_{R1} + f_{R2} + f_{ISR} + f_{bkg} + f_{SB}$

 f_{R1} , f_{R2} : Breit-Wigner \otimes Crystall Ball function (solid red line) f_{ISR} : for ISR events (green blank histogram)

 f_{bkg} : possible addition backgrounds(pink dashed line)

 f_{SB} : the background in $\psi(2S)$ reconstruction (blue shaded histogram)

Resonant parameters	J = 0	J = 2		
M_{R_1}	$3922.4 \pm 6.5 \pm 2.0$			
Γ_{R_1}	$22\pm17\pm4$			
$\Gamma_{\gamma\gamma}\mathcal{B}(R_1 \to \gamma \psi(2S))$	$9.8\pm3.6\pm1.3$	$2.0\pm0.7\pm0.2$		
M_{R_2}	$4014.3 \pm 4.0 \pm 1.5$			
Γ_{R_2}	$4 \pm 11 \pm 6$			
$\Gamma_{\gamma\gamma}\mathcal{B}(R_2 \to \gamma\psi(2S))$	$6.2\pm2.2\pm0.8$	$1.2\pm0.4\pm0.2$		

- *R*₁ near 3.92 GeV/*c*²:
 3.1σ including systematic uncertainties
- R₂ near 4.01 GeV/c²: study on look-elsewhere effect show a global significance of 2.8σ.

Discussion on the two structures

- R_1 may be X(3915), $\chi_{c2}(3930)$, or mix of them. Assuming R_1 is the $\chi_{c2}(3930)$, a rough estimation shows $\Gamma(\chi_{c2}(3930) \rightarrow \gamma \psi(2S)) = 200 \sim 300$ keV. [207 keV calculated by GI model in PRD 72, 054026 (2005)]
- R₂ has the same mass and width with 2⁺⁺ partner of X(3872) predicted in PRD 88, 054007(2013), Eur. Phys. J. C 75, 547 (2015)

- The newly reported X(4014) state still needs to be studied, and the study on the $D^*\overline{D}^*$ interaction is crucial to explore possible internal structure.
- The possibility of the X(4014) as the $D^*\overline{D}^*$ molecular state and its favored quantum numbers.[arXiv:2207.03930]

Motivation

• Aspects of $\phi(2170)$ are still not fully understood.

- Published experimental information
 - ✓ Limited decay modes
 - ✓ Inconsistence on mass & width
- Theorists explain $\phi(2170)$ as
 - ✓ $s\bar{s}g$ hybrid
 - ✓ $2^3 D_1$ or $3^3 S_1 s \bar{s}$
 - ✓ Tetraquark
 - ✓ Molecular state $\Lambda\overline{\Lambda}$
 - ✓ $\phi f_0(980)$ resonance with FSI
 - ✓ Three body system ϕKK
 - Estimated or ruled out: not yet

ϕ and η signals and sidebands

 $\square \eta \to \pi^+ \pi^- \pi^0 / \gamma \gamma, \phi \to K^+ K^-$

♦ $|M_{K^+K^-} - m(\phi)| < 12 \text{MeV}/c^2$ as signal region, 0.990< $M_{K^+K^-}$ <1.002GeV/ c^2 , 1.036< $M_{K^+K^-}$ <1.048 GeV/ c^2 as sideband region.

- $\begin{aligned} & \left| M_{\pi^{+}\pi^{-}\pi^{0}/\gamma\gamma} m_{\eta} \right| < 3\sigma_{\pi^{+}\pi^{-}\pi^{0}/\gamma\gamma} \text{ as signal region,} \\ & \left| M_{\pi^{+}\pi^{-}\pi^{0}/\gamma\gamma} m_{\eta} \pm 9\sigma_{\pi^{+}\pi^{-}\pi^{0}/\gamma\gamma} \right| < 3\sigma_{\pi^{+}\pi^{-}\pi^{0}/\gamma\gamma} \text{ as sideband} \\ & \text{region}(\sigma_{\pi^{+}\pi^{-}\pi^{0}} = 4.2 \text{MeV}/c^{2}, \sigma_{\gamma\gamma} = 11.3 \text{ MeV}/c^{2}) \end{aligned}$
- S1, S2 and S3 represent the sum of the events in the horizontal two, vertical two nearest sideband boxes and the four diagonal sideband boxes to the signal box

The normalized factor : $S = a \cdot S_1 + b \cdot S_2 - ab \cdot S_3$

ISR characters of the final states

- The photon with the highest energy is identified to be γ_{ISR} .
- The missing component after η , ϕ and γ_{ISR} being reconstructed is nothing or another ISR photon with lower energy
- $\left|M_{miss}^2(\gamma_{ISR}\eta\phi)\right| < 0.1 (GeV/c^2)^2$, the efficiency is about 97~98%
- The good agreements between data and signal MC simulations on visible energy (E_{vis}) and the polar angle of the $\eta\phi$ system in the e^+e^- CM frame $(\cos\theta(\eta\phi))$.

Invariant mass spectrum of $\eta\phi$

• Clear J/ψ signals in both $\pi^+\pi^-\pi^0$ and $\gamma\gamma$ mode

• The branching fraction of $J/\psi \rightarrow \eta \phi$

$$\mathcal{B}(J/\psi \to \eta \phi) = \frac{N_{sig}^{fit}}{\sigma_{ISR}^{prod} \times \mathcal{L} \times \varepsilon \times \mathcal{B}(\phi \to K^+K^-) \times \mathcal{B}(\eta \to \gamma \gamma/\pi^+\pi^-\pi^0)}$$

- $\mathcal{B}(J/\psi \rightarrow \eta \phi) = (0.71 \pm 0.10 \pm 0.05) \times 10^{-3}$, which agrees well with the world average value, $(0.74 \pm 0.08) \times 10^{-3}$.
- There is no obvious signal of $\phi(2170)$, but the resonant parameters of $\phi(1680)$ could be measured more precisely.

Fitting the $M(\eta\phi)$

An unbinned maximum likelihood fit is perform to the $M_{\eta\phi}$ mass spectra \in [1.55, 2.85] GeV/ c^2 using signal candidate events and 2D sideband events simultaneously.

Fitting the $M(\eta\phi)$

• Fit results with $\phi(1680)$ and $\phi(2170)$ both included, and also excluding $\phi(2170)$. The mass and width of $\phi(2170)$ are fixed from prior BESIII measurement.

Parameters	with $\phi(2170)$			without $\phi(2170)$		
	Solution I	Solution II	Solution III	Solution IV	Solution I	Solution II
χ^2/ndf	77/56		85/60			
a_0	-4.1 ± 0.5	5.0 ± 0.7	-5.0 ± 0.5	-4.8 ± 0.2	-3.2 ± 0.7	5.0 ± 0.1
a_1	2.7 ± 0.1	2.6 ± 0.1	2.7 ± 0.1	2.6 ± 0.1	2.9 ± 0.1	2.6 ± 0.1
$\mathcal{B}_{\eta\phi}^{\phi(1680)}\Gamma_{e^+e^-}^{\phi(1680)}(eV)$	122 ± 6	219 ± 15	163 ± 11	203 ± 12	75 ± 10	207 ± 16
$M_{\phi(1680)}({ m MeV}/c^2)$	1683 ± 7		1696 ± 8			
$\Gamma_{\phi(1680)}({ m MeV})$	149 ± 12			175 ± 13		
$\mathcal{B}^{\phi(1680)}_{\eta\phi}$	0.18 ± 0.02	0.19 ± 0.04	0.21 ± 0.02	0.17 ± 0.04	0.25 ± 0.12	0.23 ± 0.10
$\mathcal{B}_{\eta\phi}^{\phi(2170)}\Gamma_{e^+e^-}^{\phi(2170)}(\text{eV})$	0.09 ± 0.05	0.06 ± 0.02	16.7 ± 1.2	17.0 ± 1.2	_	
$M_{\phi(2170)}({ m MeV}/c^2)$	2163.5 (fixed)					
$\Gamma_{\phi(2170)}({ m MeV})$	31.1(fixed)					
$ heta_{\phi(1680)}(^{\circ})$	-89 ± 2	96 ± 6	-92 ± 1	-86 ± 7	-87 ± 15	108 ± 22
$ heta_{\phi(2170)}(^{\circ})$	37 ± 14	-102 ± 11	-167 ± 6	-155 ± 5		_

• The statistical significance of $\phi(2170)$ is 1.7σ , the upper limit of $\phi(2170)$ at 90% *C.L* is determined to be 0.17 eV or 18.6 eV.

Cross sections of $e^+e^- \rightarrow \eta \phi$

• The $M_{\eta\phi}$ distributions are combined and the cross section of $e^+e^- \rightarrow \eta\phi$ for each $M_{\eta\phi}$ bin is calculated according to

$$\sigma_i = \frac{n_i^{obs} - n_i^{bkg}}{\mathcal{L}_i \times \sum_j \varepsilon_{ij} \mathcal{B}_j}$$

Summary

- → With the full data sample taken by Belle, the ISR process $e^+e^- \rightarrow \eta \phi$ has been scanned from threshold to 3.95 GeV/ c^2 .
- \succ The branching fraction of J/ψ → ηφ is measured , which is in good agreement with the world average value from PDG.

> No significant $\phi(2170)$ in this work; the upper limit of $\phi(2170)$ at 90% *C.L* is calculated and $\phi(1680)$ resonant parameters are measured in this work.

Thank you for your attentions!

Back up

Systematic Uncertainties

Relative error (%) Source J=2J=0. . . Particle identification 2.8 Tracking efficiency 1.4 2.0Photon reconstruction $\psi(2S)$ mass window 0.6 $P_t^*(\psi(2S))$ and $P_t^*(\gamma\psi(2S))$ 1.0 $M_{\rm rec}^2(\gamma\psi(2S))$ 0.5 Integrated luminosity 1.4 4.3 Helicity . . . Luminosity function 2.5 Branching fractions 1.3 Statistics of MC samples 0.7 6.6 Sum in quadrature 5.1

Data and MC samples

• Data: HadronB(J) and tauskimB (980 fb^{-1} , exp7-73)

• MC:

- ♦ J/ψ → ηφ, η → π⁺π⁻π⁰/γγ, φ → K⁺K⁻ (10⁵ events)
 Y(2175) → ηφ,η → π⁺π⁻π⁰/γγ, φ → K⁺K⁻ (10⁵ events)
 φ(1680) → ηφ,η → π⁺π⁻π⁰/γγ, φ → K⁺K⁻ (3×10⁵ events)
- \$VD2a(Exp.31-55):SVD2b(Exp.61-69):SVD1(Exp.7-27):5S(Exp71-73)=8:5:3:4, PHOKHARA

Selection Criteria

	$\pi^+\pi^-\pi^0$ mode	γγ mode		
The number of charged tracks	$3 \le N_{trk} \le 4$	$N_{trk} = 2$		
PID	for K^{\pm} , $\frac{\mathcal{L}K}{\mathcal{L}K + \mathcal{L}\pi} > 0.6$ for π^{\pm} , $\frac{\mathcal{L}K}{\mathcal{L}K + \mathcal{L}\pi} < 0.4$	For K^{\pm} , $\frac{\mathcal{L}K}{\mathcal{L}K + \mathcal{L}\pi} > 0.6$		
Photon energies	$E(\gamma)>25MeV$ in the barrel $E(\gamma)>50MeV$ in the endcap	$E_l(\gamma)$ >120MeV $E_h(\gamma)$ >350MeV		
ϕ mass cut	$ M(K^+K^-) - m(\phi) < 3\sigma(\sigma = 4MeV/c^2)$			
π^0 mass cut	120MeV/ c^2 <m(<math>\gamma\gamma)<150MeV/c^2 $\chi^2(\pi^0) < 25$</m(<math>	_		
η mass cut	$ M(\pi^{+}\pi^{-}\pi^{0}) - m(\eta) < 3\sigma$ $(\sigma = 4.2 MeV/c^{2})$	$\begin{split} M(\gamma\gamma)-m(\eta) < 3\sigma \\ (\sigma = 11.3 MeV/c^2) \end{split}$		
Recoil mass cut	$\left M_{miss}^{2}(\gamma_{ISR}\eta\phi)\right < 0.1 (GeV/c^{2})^{2}$			

Fitting the M($\eta\phi$)

• The parametrization for the cross section of $e^+e^- \rightarrow \eta \phi$

$$\sigma_{\eta\phi}(\sqrt{s}) = 12\pi \mathcal{P}_{\eta\phi}(\sqrt{s}) \left| A_{\eta\phi}^{n.r.}(\sqrt{s}) + A_{\eta\phi}^{\phi(1680)}(\sqrt{s}) + A_{\eta\phi}^{\phi(2170)}(\sqrt{s}) \right|^2$$

 $A_{\eta\phi}^{n.r.}(\sqrt{s}) = a_0/s^{a_1}$ is used to describe the non-resonant contribution

$$A_{\eta\phi}^{\phi(1680)}(\sqrt{s}) = \sqrt{\mathcal{B}_{\phi(1680)}^{\eta\phi}\Gamma_{\phi(1680)}^{e^+e^-}} \frac{\sqrt{\Gamma_{\phi(1680)}/\mathcal{P}_{\eta\phi}(M_{\phi(1680)}^2)} e^{i\theta_{\phi(1680)}}}{M_{\phi(1680)}^2 - s - i\sqrt{s}\Gamma_{\phi(1680)}(\sqrt{s})}$$

$$\Gamma_{\phi(1680)}(\sqrt{s}) = \Gamma_{\phi(1680)}[\frac{\mathcal{P}_{KK^*(892)}(\sqrt{s})}{\mathcal{P}_{KK^*(892)}(M_{\phi(1680)})}\mathcal{B}_{\phi(1680)}^{KK^*(892)} + \frac{\mathcal{P}_{\eta\phi}(\sqrt{s})}{\mathcal{P}_{\eta\phi}(M_{\phi(1680)})}\mathcal{B}_{\phi(1680)}^{\eta\phi}$$

$$+ (1 - \mathcal{B}_{\phi(1680)}^{\eta\phi} - \mathcal{B}_{\phi(1680)}^{KK^*(892)})].$$

 $\mathcal{B}_{\phi(1680)}^{KK^*(892)} \approx 2 \times \mathcal{B}_{\phi(1680)}^{\eta \phi}$ from Ref. [1] directly

$$A_{\eta\phi}^{\phi(2170)}(s) = \sqrt{\mathcal{B}_{\phi(2170)}^{\eta\phi}\Gamma_{\phi(2170)}^{e^+e^-}} \frac{\sqrt{\Gamma_{\phi(2170)}/\mathcal{P}_{\eta\phi}(M_{\phi(2170)}^2)} e^{i\theta_{\phi(2170)}}}{M_{\phi(2170)}^2 - s - i\sqrt{s}\Gamma_{\phi(2170)}} \cdot \frac{B(p)}{B(p')}$$

[1] Phys. Rev. D 77, 092002 (2008)

Systematic Uncertainty

Source	$\gamma\gamma$ mode	$\pi^+\pi^-\pi^0$ mode	common
Particle identification	2.0	4.0	2.0
Tracking	0.7	1.4	0.7
Photon reconstruction	6.0	6.0	6.0
ϕ, η masses and $M_{\rm miss}^2(\eta\phi\gamma_{\rm ISR})$	1.7	1.4	1.4
Luminosity	1.4	1.4	1.4
Generator	0.5	0.5	0.5
$\sigma^{ m prod}_{ m ISR}(J/\psi)$	1.0	1.0	1.0
Trigger	1.5	1.0	
Branching fractions	0.6	0.6	0.6
J/ψ signal fitting	1.8	1.5	
MC statistics	0.1	0.1	0.1
Sum for $\sigma(e^+e^- \to \eta\phi)$	6.9	7.3	6.7
Sum for $\mathcal{B}(J/\psi \to \eta \phi)$	7.2	7.9	6.8

■ The total irrelevant uncertainties (σ_{tot}) is calculated by $\sqrt{\sum_i (\Delta \varepsilon_i \times B_i)^2 / \sum_i (\varepsilon_i \times B_i)}$, where $\Delta \varepsilon_i$ equal to $\sigma_i \times \varepsilon_i$, *i* is *i*-th mode of η decays. ■ σ_{sys} =6.8% is calculated by $\sqrt{\sum_j {\sigma_j}^2 + \sigma_{tot}^2}$ (σ_j is the each source of common uncertainties mentioned above)