

用于CEPC内层顶点探测器的高计数率CMOS像素探测器 芯片研制

Ying Zhang (IHEP)

On behalf of the CEPC MOST2 Vertex detector design team

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 8月8-11日,2022

Outline

- Project introduction and TaichuPix chip overview
- Small-scale prototypes design and test results
- Full-scale prototype design and preliminary test
- Summary & Outlook

CEPC Vertex detector requirements

Circular Electron Positron Collider (CEPC) proposed as a Higgs factory.

Efficient tagging of heavy quarks (b/c) and τ leptons

→ Impact parameter resolution,

$$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} \ (\mu m)$$

Baseline design parameters for CEPC vertex detector

	$R \ (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector, http://cepc.ihep.ac.cn/

 $\leq 6.2 \times 10^{12} n_{ed} / (cm^2 year)$

MOST2 project requirements on pixel chip

Motivation for TaichuPix chip design

- Large-scale & full functionality pixel chip \geq
- Fit to be assembled on ladders with backend Elec. & DAQ

2022/8/10, 高能物理分会学术年会

P- Epitaxial Laver

P++ Substra

Main specs of the full scale chip for high rate vertex detector

Bunch spacing

- Higgs: 680 ns; W: 210 ns; Z: 25 ns
- > Max. bunch rate: 40 M/s

Hit density

 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: ~3 pixels/hit

- > Epi-layer thickness: ~18 µm
- Pixel size: 25 µm × 25 µm

Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Date rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	~1.4 cm×2.56 cm

CP

TaichuPix architecture

Motivation: a large-scale & full functionality pixel sensor for the first 6layer vertex detector prototype

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- > Priority based data-driven readout
- > Time stamp added at EOC
- > Readout time: 50 ns for each pixel

2-level FIFO architecture

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- > Trigger-less: 4.48 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

TaichuPix small prototypes overview

TaichuPix-1 Chip size: 5 mm \times 5 mm Pixel size: 25 μ m \times 25 μ m

 $\begin{array}{c} \mbox{TaichuPix-2} \\ \mbox{Chip size: } 5\mbox{ mm} \times 5\mbox{ mm} \\ \mbox{Pixel size: } 25\mbox{ } \mu m \times 25\mbox{ } \mu m \end{array}$

Two MPW chips were fabricated and verified

- > TaichuPix-1: 2019.06~2019.11
- > TaichuPix-2: 2020.02~2020.06

Chip size 5 mm×5 mm with standalone features

- In-pixel circuitry:
 - Continuously active front-end
 - Two digital schemes, with masking & testing config. logics
- > A full functional pixel array (64×192 pixels)
- Periphery logics
 - Fully integrated logics for the data-driven readout
 - Fully digital control of the chip configuration
- > Auxiliary blocks for standalone operation
 - High speed data interface up to 4 Gbps
 - On-chip bias generation
 - Power management with LDOs
 - IO placement in the final ladder manner
 - Multiple chip interconnection features included

Electrical test

 Electrical performance verified by injecting external voltage pulses into pixel front-end

Performance of threshold and noise of TaichuPix2

- Pixel array includes 4 sectors with different transistor parameters/layout for analog front-end, S1 chosen for the full-scale design.
- Threshold can be tuned by changing 'ITHR' (a global current bias)

Chip4	Threshold Mean (e⁻)	Threshold rms (e⁻)	Temporal noise (e ⁻)	Total equivalent noise (e⁻)
S1	267.0	49.8	29.3	57.8
S2	293.4	54.5	26.9	60.8
S3	384.9	58.4	24.4	63.3
S4	411.9	56.6	26.5	62.5

CP

Functionality of complete signal chain of TaichuPix2

Functionality of the complete signal chain (including sensor, analog front-end, in-pixel logic readout, matrix periphery readout and data transmission unit) was firstly proved with an X-ray source and a laser source.

TaichuPix2 response to X-ray tube (cutting energy @ 6keV) Simulated analog output with different input signal

Letter imaging obtained with a 1064 nm laser spot scanning on the TaichuPix-2

TaichuPix2 test with ⁹⁰Sr

- Shape and amplitude of analog signal as expected, but peaking time and pulse length larger than simulation.
- Average cluster size decreases with threshold as expected
- Average cluster size for S1-S4 less than 3 as expected
 - Indicates the estimated maximum hit rate (36 MHz/cm²) reasonable
 - Cluster size >1, benefits the spatial resolution (better than $pitch/\sqrt{12}$ = 7.2 µm)

Overview of the large-scale prototype —— TCPX3

Pixel cell copied exactly from MPW + scaled logic with new layout
 Periphery + debugged/improved blocks + enhanced power network

Ladder readout design

> Sensor chips, readout electronics, mechanical support, etc.

- Interposer board: FMC mezzanine rigid and flex board, in production
- FPGA board: FMC carrier board, available in the lab

Large-scale TaichuPix chip

- 6 TaichuPix-3 wafers arrived at IHEP in July
 - > One wafer thinned down to 150 µm and diced
 - Single die size ~25.7 mm × 15.9 mm
 - Next step: thinned down to the final target thickness ~100 µm for ladder assembly

Wafer after thinning and dicing

Thickness after thinning

- > 3 wafers sent to do wafer test on probe-station
 - \rightarrow chip selecting & yield evaluation
- > Ladder assembly study under way
 - First version of flex board produced
 - Jig tool design, assembly tool & process experiments

8-inch wafer

TaichuPix-3 chip on probe card

Dummy chip glued to the flex board

Preliminary TaichuPix-3 testing

Single chip test in progress

- > Chip bonded on the test board
- > Test system built, preliminary debugging finished

TaichuPix-3 chip vs. coin

- Preliminary test result
 - > Pixel analog responds normal to an injected voltage
 - Functionality of primary circuit normal
 - Pixel analog + pixel digital + periphery readout +
 data interface

Analog output of a pixel @ Vin = 1.1 V

	Data valid	Time stamp	Column	Row	Pattern
2	1	57	63	1023	0
3	1	57	63	1021	0
4	1	57	63	1020	0
5	1	57	63	1019	0
6	1	57	63	1018	0
7	1	57	63	1017	0
8	1	57	63	1016	0
9	1	57	63	1023	0
10	1	57	63	1014	0
11	1	57	63	1013	0
12	1	57	63	1012	0
13	1	57	63	1011	0
14	1	57	63	1010	0
15	1	57	63	1009	0
16	1	57	63	1008	0

Digital output data with test input to pixels of col.63

Summary & Outlook

Two small-scale TaichuPix chips were developed to perform initial R&D

- Pixel pitch 25 µm, readout time 50 ns/pixel
- > Full signal chain & functionality verified with both electrical & radioactive test

The first full scale prototype have been fabricated

- Die size ~25.7 mm × 15.9 mm, will be assembled on a ladder for a silicon vertex detector prototype
- > Preliminary single chip test proves major functionality normal

Outlook

- > Detailed test on TaichuPix-3
- Ladder assembly with TaichuPix-3 chips
- > 6 double-sided ladder expected available in November
- Beam test @ DESY planned in December

Thank you very much for your attention!