

The Theoretical Calculation for Exclusive Vector Meson Production at Future EIC

Xin Wu (吴鑫)

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

EIC and exclusive process

• EIC: study the properties and dynamics of quarks and gluons

eRHIC (Eur.Phys.J.A 52 (2016) 9, 268)

- Exclusive process: important channels for investigating the composition of protons and nuclear targets
- Simulate the detection of exclusive products at EIC is essetial at the present stage

ElcC (Front.Phys.(Beijing) 16 (2021) 6, 64701)

The cross section for exclusive process

• $ep \rightarrow epV$ Cross section:

$$\sigma(ep \to epV) = \int dW \int d\omega \int dQ^2 \frac{d^2n}{d\omega dQ^2} \sigma_{\gamma*p \to Vp}(W, Q^2)$$

 Classical Weizsacker–Williams Equivalent Photon Approximation (EPA): The electromagnetic field of a fast moving charged particle can be regarded

The electromagnetic field of a fast moving charged particle can be regarded as a swarm of photons

$$n(\omega, \vec{x}_{\perp}) = \frac{Z^2 \alpha_{QED}}{\pi^2 \omega} \left| \int_0^\infty dk_{\perp} k_{\perp}^2 \frac{F(k_{\perp}^2 + (\frac{\omega}{\gamma})^2)}{k_{\perp}^2 + (\frac{\omega}{\gamma})^2} J_1(x_{\perp} k_{\perp}) \right|^2$$

Prog.Part.Nucl.Phys. 39 (1997) 503-564

- The issues in classical EPA:
- Charged particle keep moving on a straight trajectory (?)
- > Photon energy ω can be larger than charged particle energy E (?)

Photon flux used in eSTARlight

• The photon flux used in eSTARlight is (Phys.Rev.C 99 (2019) 1, 015203)

$$\frac{d^2n}{d\omega dQ^2} = \frac{\alpha}{\pi\omega Q^2} \left[1 - \frac{\omega}{E} + \frac{\omega^2}{2E^2} - (1 - \frac{\omega}{E}) \left| \frac{Q_{min}^2}{Q^2} \right| \right]$$

with
$$Q_{min}^2 = \frac{m_e^2 \omega^2}{E(E-\omega)}$$
 and $Q_{max}^2 = 4E(E-\omega)$ require $\omega < E - 10m_e$

Feynman diagram for electroproduction

Cross section: $d\sigma_{ep} = \sigma_{\gamma}(\omega) dn$

absorption cross section $\sigma_{\gamma}(\omega)$

QED EPA method

• Express the cross section in terms of photon density matrix $\rho^{\mu\nu}$ and photoabsorption amplitude M^{μ} :

$$d\sigma_{ep} = \frac{4\pi\alpha}{(-q^2)} M^{*\nu} M^{\mu} \rho^{\mu\nu} \frac{(2\pi)^4 \delta(p+P-p'-k) d\Gamma}{4\sqrt{(pP)^2 - p^2 P^2}} \frac{d^3p'}{2E'(2\pi)^3}$$
$$\rho^{\mu\nu} = \frac{1}{2(-q^2)} Tr[(\hat{p} + m_e)\gamma^{\mu}(\hat{p'} + m_e)\gamma^{\nu}] = -(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}) - \frac{(2p-q)^{\mu}(2p-q)^{\nu}}{q^2}$$

• Expand the cross section using the transverse and scalar photon absorption cross section:

$$d\sigma = \frac{\alpha}{4\pi^2 |q^2|} \left[\frac{(qP)^2 - q^2 P^2}{(pP)^2 - p^2 P^2} \right]^{1/2} (2\rho^{++}\sigma_T + \rho^{00}\sigma_S) \frac{d^3p'}{E'}$$

• The equivalent photon flux:

$$dn = \frac{\alpha}{2\pi E^2} \rho^{++} \omega d\omega \frac{d(-q^2)}{|q^2|} = \frac{\alpha}{4\pi E^2} \left[\frac{(2E-\omega)^2}{\omega^2 - q^2} + 1 + \frac{4m_e^2}{q^2} \right] \frac{\sqrt{\omega^2 - q^2} d\omega d(-q^2)}{|q^2|}$$

Correction for eSTARlight

• The equivalent photon flux:

$$dn = \frac{\alpha}{4\pi E^2} \left[\frac{(2E - \omega)^2}{\omega^2 - q^2} + 1 + \frac{4m_e^2}{q^2} \right] \frac{\sqrt{\omega^2 - q^2} d\omega d(-q^2)}{|q^2|}$$

• For $Q^2(=-q^2) \ll \omega^2$ (eSTARlight)

$$\frac{d^2n}{d\omega dQ^2} = \frac{\alpha}{\pi\omega Q^2} \left[1 - \frac{\omega}{E} + \frac{\omega^2}{2E^2} - \left(1 - \frac{\omega}{E}\right) \left| \frac{Q_{min}^2}{Q^2} \right| \right]$$

with
$$Q_{min}^2 = \frac{m_e^2 \omega^2}{E(E-\omega)}$$
 and $Q_{max}^2 = 4E(E-\omega)$ require $\omega < E - 10m_e$

• The complete form of the Q_{min}^2 and Q_{max}^2

$$Q_{min}^{2} = -\left(2E\omega - 2E^{2} + 2m_{e}^{2} + 2\sqrt{(E^{2} - m_{e}^{2})[(E - \omega)^{2} - m_{e}^{2}]}\right)$$
$$Q_{max}^{2} = \left[\sqrt{E^{2} - m_{e}^{2}} + \sqrt{(E - \omega)^{2} - m_{e}^{2}}\right]^{2} - \omega^{2}$$

The ω distribution of the photon flux

Electron Photonflux

- Classical EPA fails at large ω •
- Q^2 term causes a significant difference at low ω ٠

Photonflux in coordinate space

• Convert
$$\frac{d^2n}{dQ^2d\omega}$$
 to $\frac{d^2n}{dp_td\omega}$ by performing a variable change:
 $dQ^2d\omega = \begin{vmatrix} \frac{\partial Q^2}{\partial p_t} & \frac{\partial Q^2}{\partial \omega} \\ \frac{\partial \omega}{\partial p_t} & \frac{\partial \omega}{\partial \omega} \end{vmatrix} dp_td\omega \rightarrow \begin{aligned} dQ^2d\omega &= \frac{\partial Q^2}{\partial p_t} dp_td\omega \\ &= (\frac{2p_zp_t}{\sqrt{(E_e - \omega)^2 - p_t^2 - m_e^2}})dp_td\omega \end{aligned}$

• Transform to coordinate space:

$$\frac{d^3n}{d^2rd\omega} = \frac{\alpha}{\omega\pi^2} \left(\int_0^{p_{tmax}} \sqrt{\frac{p_t\pi\omega}{2\alpha}} \frac{d^2n}{d\omega dp_t} J_1(p_t \cdot r) \right)^2 \quad \rightarrow$$

Photonnuclear cross section for virtual photon

• The Q^2 dependence of the photon uclear cross section following

$$\sigma_{\gamma * A \to VA}(W, Q^2) = f(M_V)\sigma(W, Q^2 = 0) \left(\frac{M_V^2}{M_V^2 + Q^2}\right)^n$$

 $f(M_V)$ is the mass distribution of the vector meson and $\sigma(W, Q^2 = 0)$ is the cross-section for VM photoproduction with real photons, n ~ 2

• The term $\frac{M_V^2}{M_V^2+Q^2}$ represents the amplitude of a virtual photon fluctuates to a given hadronic component, thus the vector meson flux can be written as

$$\frac{d^{3}n_{V}}{d^{2}rd\omega} = \frac{\alpha}{\omega\pi^{2}} \frac{e^{2}}{f_{V}^{2}} \left(\int_{0}^{p_{tmax}} \sqrt{\frac{p_{t}\pi\omega}{2\alpha}} \left(\frac{M_{V}^{2}}{M_{V}^{2} + Q^{2}}\right)^{2} \frac{d^{2}n}{d\omega dp_{t}} J_{1}(p_{t} \cdot r) dp_{t} \right)^{2}$$
$$Q^{2} = p_{t}^{2} + p_{\gamma_{z}}^{2} - \omega^{2} \qquad p_{\gamma_{z}}^{2} = \left(p_{z} - p_{z}^{'}\right)^{2} = \left(\sqrt{E^{2} - m_{e}^{2}} - \sqrt{(E - \omega)^{2} - m_{e}^{2}}\right)^{2}$$

The ep \rightarrow epV cross section

The cross section

$$\sigma(ep \to epV) = \int dW \int d\omega \int dQ^2 \frac{d^2n}{d\omega dQ^2} \sigma_{\gamma*p \to Vp}(W, Q^2)$$

• For ep 5×41 GeV and 10×100 GeV scattering, the rapidity distribution of the J/Ψ electroproduction cross section are calculated as

The eA \rightarrow eAV cross section

• The scattering amplitude (Phys.Rev.C 99 (2019) 6, 061901):

$$\Gamma_{\gamma A \to V A}(\vec{r}) = \frac{f_{\gamma A \to V A}(0)}{\sigma_{V N}} 2\left[1 - \exp\left(-\frac{\sigma_{V N}}{2}T'(\vec{r})\right)\right]$$

 $f_{\gamma A \rightarrow VA}(0)$: forward-scattering amplitude, $T'(\vec{r})$: modified thickness function

• Set the electron at origin, the production amplitude:

$$A(\vec{r}) = a(\omega, \vec{r}) \Gamma_{\gamma A \to V A}(\vec{r} - \vec{b})$$

 $a(\omega, \vec{x}_{\perp}) = \sqrt{n(\omega, \vec{r})}$ is the photonflux amplitude

• The production amplitude in momentum space:

$$A(\vec{p}_{\perp}) = \frac{1}{2\pi} \int d^2 \vec{r} A(\vec{r}) e^{i \vec{p}_{\perp} \cdot \vec{r}}$$

• The cross section:

$$\sigma_{eA\to eAV} = \int 2\pi b db \int d^2 \vec{p}_{\perp} |A(\vec{p}_{\perp})|^2$$

$eAu \rightarrow eAu + J/\psi \ cross \ section$

Summary

- An improved equivalent approximate photon distribution based on QED was derived, overcomes the weakness of traditional EPA at large photon energy
- The Q_{min}^2 and Q_{max}^2 were corrected and the Q^2 term in the denominator is considered.
- The J/ψ photoproduction cross section of ep and eAu was shown, the formula in coordinate space includes the impact parameter.

Outlook: correction for large Q^2 calculation

Thank you!

Back up

• For Au with E = 100 GeV/nucleon:

• Classical EPA can be safely used in heavy-ion collisions

Back up

• Photon flux induced by a proton:

