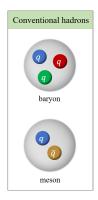
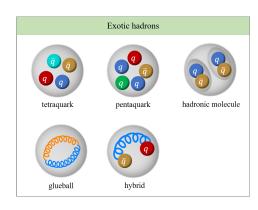
Prediction of a narrow exotic hadronic state with quantum numbers $J^{PC} = 0^{--}$

Teng Ji


Based on T. Ji, X.-K. Dong, F.-K. Guo and B.-S. Zou, arXiv:2205.10994


August 10,2022

Background

Background

- Exotic quantums number such as $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}$.
- Some of 1^{-+} have been observed such as $\pi_1(1400), \pi_1(1600), \eta_1(1855)$.
- No 0⁻⁻ has been observed yet.

Framework

Table 1: The hadronic molecules considered in this work and their possible experimental candidates. The masses with † are the experimental values of their candidates.

Molecule	Components	J^{PC}	Candidates	Mass (GeV)	E_B MeV
$\psi(4230)$	$\frac{1}{\sqrt{2}}(D\bar{D}_1-\bar{D}D_1)$	1	$\psi(4230)$	$4.220 \pm 0.015^{\dagger}$	67 ± 15
$\psi(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 - \bar{D}^*D_1)$	1	$\psi(4360)$	$4.368 \pm 0.013^{\dagger}$	62 ± 14
$\psi(4415)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_2 - \bar{D}^*D_2)$	1	$\psi(4415)$	$4.421 \pm 0.004^{\dagger}$	49 ± 4
$\psi_0(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 + \bar{D}^*D_1)$	0	-	-	-

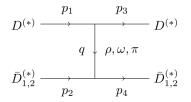


Figure 1: Feynman diagrams for the t channel P, V-exchange potential.

$$D^{(*)} \xrightarrow{p_1} D^{(*)} \longrightarrow D^{(*)} \qquad \bullet \mathcal{M}_{ij} = \frac{A_{ij}^V}{q^2 + m_V^2} + \frac{A_{ij}^P}{q^2 + m_P^2} + c_V B_{ij}^V + c_P B_{ij}^P.$$

- $\psi(4230), \psi(4360) \& \psi(4415)$ as inputs.
- $\rightarrow \qquad \qquad \bar{D}_{1,2}^{(*)} \qquad \bullet \ \, \text{Defining} \,\, \chi^2 = \sum_i \left(\frac{E_{B,ii} E_{\text{exp},ii}}{E_{\text{exp},ii}} \right)^2.$
 - Minimizing χ^2 to obtain proper c_V, c_P, Λ .
 - Predicting the properties of $\psi_0(4360)$.

t-channel results

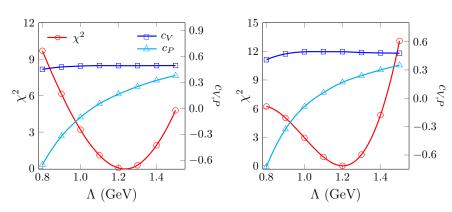


Figure 2: The best fitting for the single-channel (left) and coupled-channel (right) cases whose $c_V=0.50,\,c_P=0.18$

 \bar{D}^*

u channel considered

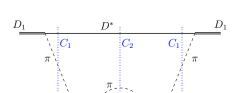


Table 2: Pole positions relative to the $D^*\bar{D}_1$ threshold in units of ${
m MeV}$ with $c_V=0.50, c_P=0.18$ from the single t-channel fitting.

 \bar{D}_1

 \bar{D}_1

System	1		0		
t-channel	-63.5 ± 13.8		-72.4 ± 17.4		
g_S	g_{S0}	g_{S1}	g_{S0}	g_{S1}	
C_2	-61.5 - 3.5i	-61.5 - 9.2i	-70.0 - 3.5i	-70.0 - 8.9i	
$C_1 \& C_2$	-65.8 - 6.6i	-73.1 - 14.2i	-65.8 - 0.30i	-59.4 - 1.1i	

We predict $m_{\psi_0}=4366\pm18$ MeV and $\Gamma_{\psi_0}<10$ MeV.

Experimental search

- The only channel for $\psi_0(4360)$ production in e^+e^- annihilation at $\sqrt{s}\sim 5$ GeV is P-wave $\eta\psi_0(4360)$.
- Hard to be distinguished from $\eta\psi(4360)$ with only invariant mass distribution of, e.g., $D\bar{D}^*$.
- Angular distribution is necessary.

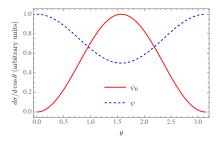


Figure 3: Angular distribution of $e^+e^- \to \eta\psi_{(0)}$. θ is the angle between the outgoing η and initial e^+e^- beam

Summary

- Exotic $D^*\bar{D}_1$ molecules denoted as $\psi_0(4360)$ has been predicted from *t*-channel meson exchange.
- Contact terms are determined by reproducing the experimental values of $\psi(4230), \, \psi(4360)$ and $\psi(4415)$ binding energies.
- Coupled-channel effects are found negligible.
- 3-body effects to the $D^*\bar{D}_1$ molecules are investigated.
- The effects of u-channel π exchange will change the binding energy by $\lesssim 10~{\rm MeV}$, not change the qualitative conclusions.
- $\psi_0(4360)$ can be searched for in the $D^*\bar{D}^*$ final state in $e^+e^-\to \eta\psi_0\to \eta D\bar{D}^*$ and it is distinguishable from $e^+e^-\to \eta\psi\to \eta D\bar{D}^*$.

Thank You!