
# $p_T$ dispersion of inclusive jets in high-energy nuclear collisions

#### **Shi-Yong Chen**

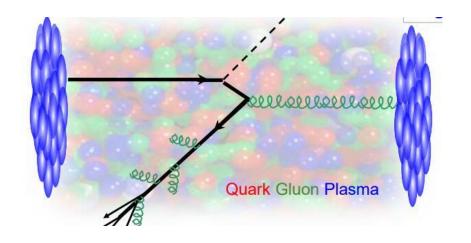
(Huanggang Normal University)

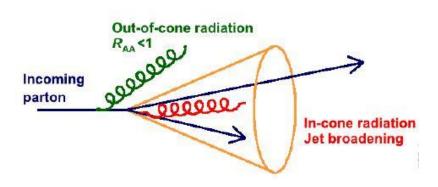


Shi-Yong Chen, Jan Yan, Wei Dai, Ben-Wei Zhang and En-Ke Wang arXiv:2204.01211

#### **Outline**

Motivation


• Jet momentum dispersion  $(p_T D)$  in pp and AA collisions


Results and disscussion

Summary

#### **Motivation**

#### Heavy-ion collisions: Quark Gluon Plasma





- Jet quenching is one of the most powerfull hard probe to investigate QGP.
- High p\_T hadron and full jet observables: productions and correlations.
- Jet substructures: jet shape, jet splitting functions, jet fragmentation functions, jet charge...

## Motivation: jet angularity

Generalized jet angularities defined as,

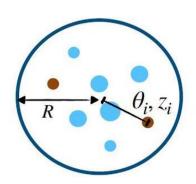
$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} z_i^{\kappa} \theta_i^{\alpha}, \qquad (z_i \equiv \frac{p_{Ti}}{\sum_{i \in jet} p_{Ti}}, \ \theta_i \equiv \frac{\Delta R_i}{R})$$
 (the transverse (the angle of the *i*th momentum of jet constituent relative to jet axis)

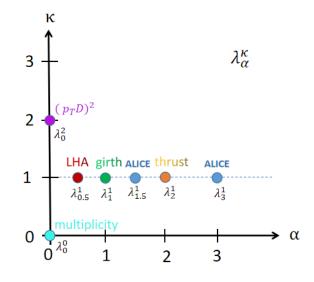
The exponents  $\kappa$  and  $\alpha$  probe different aspects of the jet fragmentation,

$$(1,1) \Rightarrow \text{ girth}$$

$$(2,0) \Rightarrow (p_T D)^2$$

$$(\kappa,\alpha)$$

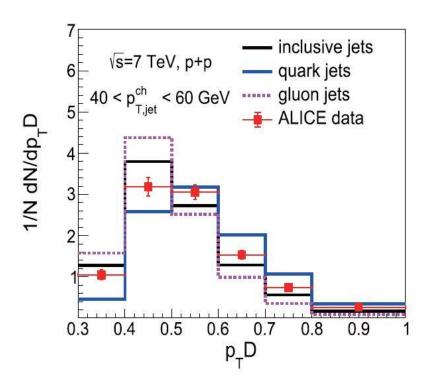

$$(0,0) \Rightarrow \text{ hadron multiplicity}$$


$$(1,2) \Rightarrow \text{ jet-mass-squared divided by energy (thrust)}$$

$$(1,0.5) \Rightarrow \text{ Les Houche Angularity(LHA)}$$

• How  $p_T D$  is modified by jet quenching?

[Larkoski, JDT, Waalewijn,1408.3122], [For a more complete catalog, see Gallicchio, Schwartz, 1106.3076, 1211.7038] [based on Berger, Kucs, Sterman, hep-ph/0303051]; [Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014], [see also Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT.1401.2158]






- The momentum dispersion  $p_T D$  is defined as,  $p_T D = \frac{\sqrt{\sum_{i \in jet} p_{T,i}^2}}{\sum_{i \in jet} p_{T,i}}$
- Connect to how hard or soft of jet fragmentation.

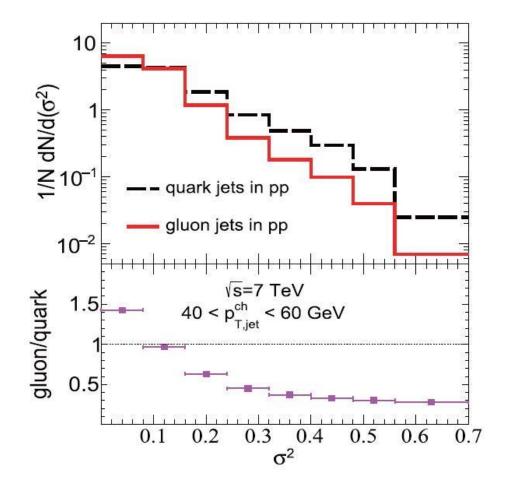
e.g. in the extreme case of few constituents carrying a large fraction of the jet momentum,  $p_TD$  will be close to 1, while in the case of jets with a large number of constituents and softer momentum,  $p_TD$  would end up closer to 0.

- In pp collisions: POWHEG+PYTHIA
- Well consistent with ALICE data, provide soild pp baseline.
- $p_T D$  distribution for gluon jets located in smaller  $p_T D$  region.



ALICE Collaboration, JHEP 1810,139(2018) [arXiv:1807.06854[nucl-ex]] S.Y. Chen, J.Yan, Wei Dai, Ben-Wei Zhang and En-Ke Wang. arXiv: 2204.01211.

## Standard deviation $\delta = \frac{\sqrt{\sum (p_{Ti} - \langle p_{Ti} \rangle)^2}}{n \langle p_{Ti} \rangle}$


• Analytical connected with  $(p_T D)^2$  and 1/n.

$$\delta^{2} = \frac{\sum (p_{Ti} - \langle p_{Ti} \rangle)^{2}}{n^{2} \langle p_{Ti} \rangle^{2}}$$

$$= \frac{\sum (p_{Ti}^{2} - 2p_{Ti} \langle p_{Ti} \rangle + \langle p_{Ti} \rangle^{2})}{n^{2} \langle p_{Ti} \rangle^{2}}$$

$$= (p_{T}D)^{2} - \frac{1}{n}$$

- Higher  $\delta$  means more  $p_{Ti}$  are generally far from the mean value  $\langle p_{Ti} \rangle$ , lower  $\delta$  indicates that more  $p_{Ti}$  are clustered close to  $\langle p_{Ti} \rangle$ .
- At the same  $p_T$ ,  $\delta$  of gluon jets are smaller than quark jets because of containing more fragment constituents.



## Jet quenching model

- 1. POWHEG+PYTHIA generate showered partonic event
- 2. parton initial position generated by Glauber model ( $r_0$ , T)
- 3. the parton suffer radiative energy loss during  $t_1$ ,  $t_2$  by probability:

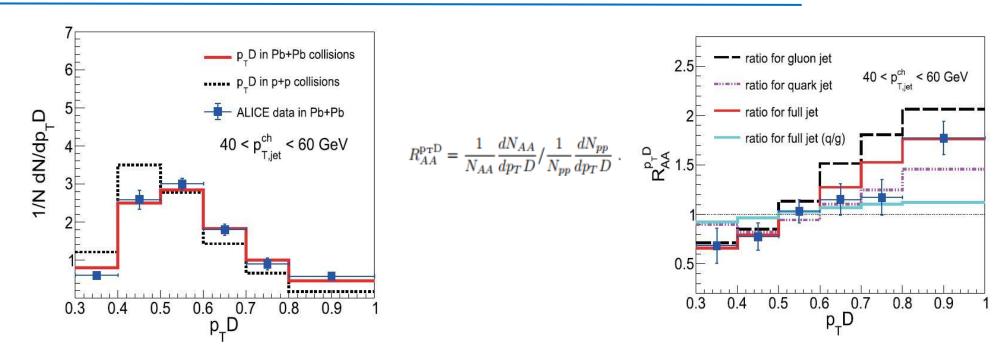
$$\langle N_g(t,\Delta t)\rangle = \Delta t \int dx d^2 k_{\perp} \frac{dN}{dx d^2 k_{\perp}}$$
  $P_{rad}(t,\Delta t) = 1 - e^{-\langle N_g \rangle}$ 

$$\frac{dN}{dxd^{2}k_{\perp}dt} = \frac{2\alpha_{s}P(x)\hat{q}}{\pi k_{\perp}^{4}}\sin^{2}(\frac{t-t_{i}}{2\tau_{f}})(\frac{k_{\perp}^{2}}{k_{\perp}^{2}+x^{2}M^{2}})^{4}$$

QGP transport coefficient:  $\hat{q}(\tau,r) = q_0 \frac{\rho^{QGP}(\tau,r)}{\rho^{QGP}(\tau_0,0)} \frac{p^{\mu}u_{\mu}}{p^0}$ the spectrum is given by Higher-Twist, P(x) is splitting function

$$P_{q \to qg} = \frac{(1-x)(2-2x+x^2)}{x}$$

$$P_{g \to gg} = \frac{2(1-x+x^2)^3}{x(1-x)}$$

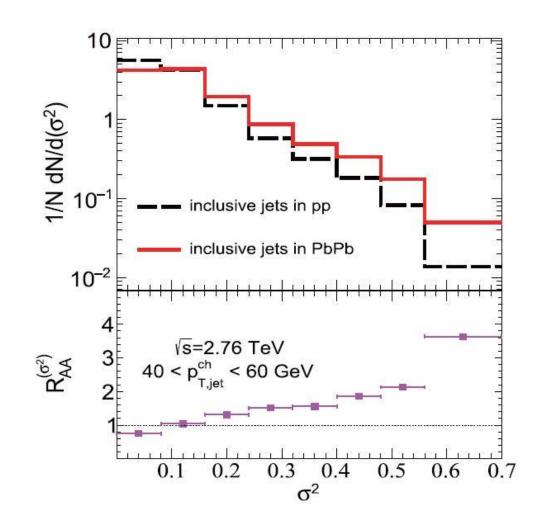

4. the number of radiated gluon is given by Poisson distribution

$$P(\mathbf{n}) = \frac{\left\langle N_g \right\rangle^n}{n!} e^{-\left\langle N_g \right\rangle}$$

5. the collisional energy loss: Hard Thermal Loop calculation

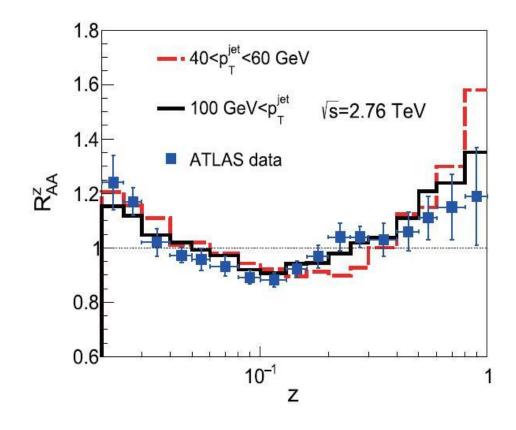
$$\frac{\mathrm{d}E}{\mathrm{d}z} = \frac{\alpha_s C_i m_D^2}{2} \ln \frac{\sqrt{ET}}{m_D}$$

- 6. the temperature is read from 2+1 D viscos hydro if  $T_i < T_C$ , escape QGP
- 7. Perform hadronization with pythia




- In Pb+Pb collisions: well consistent with ALICE data. Distribution of  $p_TD$  shifted to higher value.
- $R_{AA}^{\ p_TD} < 1$  in lower  $\ p_TD$  region and  $R_{AA}^{\ p_TD} > 1$  in higher  $\ p_TD$  region.  $R_{AA}^{\ p_TD}$  for gluon jets is much stronger than quark jets.
- What causes this?
  - Parton energy loss
  - q/g fraction alteration

$$(p_T D)^2 = \delta^2 + \frac{1}{n}$$


- smaller <n> larger 1/n. ( $\overline{n_{pp}}=6.74$ ,  $\overline{n_{PbPb}}=6.52$ )
- $\sigma^2$  shift to larger value region , means more  $p_T$  of jet constituents stay further away from the mean value.

$$\sigma^2 \uparrow \qquad 1/n \uparrow \qquad \qquad (p_T D)^2 \uparrow$$



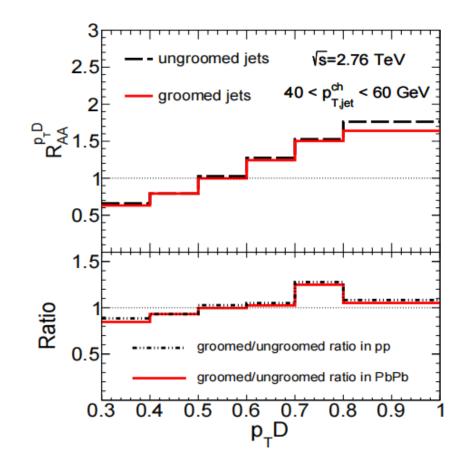
- Momentum fraction z: fragmentation function, related with  $p_{T,i}$  only.
- $R_{AA}^{z}$ >1 when 0.02<z,<0.05 and 0.3<z<1;  $R_{AA}^{z}$ >1 when 0.05<z<0.3.

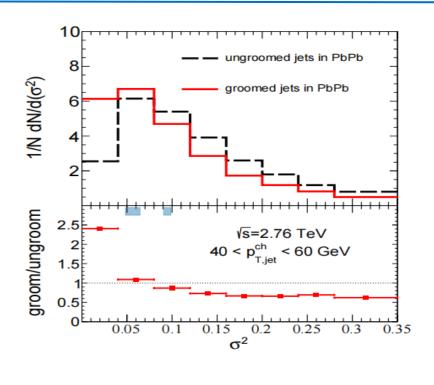
means more constituents of  $p_{\mathrm{T,i}}$  stay further away from the mean value.

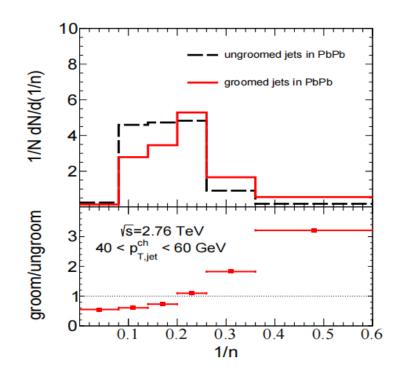


#### Soft-drop:

- First reclustered using the Cambridge-Aachen(C/A) algorithm.
- Then declustered in the reverse order by dropping the softer branch until two hard branches are found to satisfy the following condition,


$$\frac{min(p_T 1, p_T 2)}{p_T 1 + p_T 2} \equiv z_g > z_{cut} (\frac{\Delta R}{R})^{\beta}$$


$$z_{cut}$$
=0.1,  $\beta$ =0


#### Groomed vs ungroomed:

medium modification reduced.

How does the grooming procedure modify  $p_TD$  distribution?







$$(p_T D)^2 = \delta^2 + \frac{1}{n}$$

- Grooming process will enhance the value of 1/n and meanwhile lead to lower  $\delta$ .
- The correction of 1/n are more pronounced.

#### **Summary**

- $p_T D$  distribution shifted to higher  $p_T D$  value after jet quenching.
- Medium modification of  $p_TD$  is caused by both parton redistribution (borth  $\delta^2$  and 1/n enhanced) and alteration of overall quark/gluon fraction.
- The trend of groomed  $R_{AA}^{\ p_TD}$  is consistent with ungroomed, grooming procedure would weaken  $p_TD$  nuclear modification.

## Thank you for your attantion!