

强子物理实验研究进展

周小蓉 中国科学技术大学

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022.8.8-11 辽宁大连

Outline

Introduction

Perturbative QCD and Hadrons

➤ Experimental approach

- Hadron Production
- Highlights in Hadron Spectroscopy
 - Light "nonstandard" hadrons
 - ➢ Heavy "nonstandard" hadrons
- Summary

I apologize for missing many important results

Introduction

- The standard model of particle physics is a well-tested theoretical framework.
- However, the SM has a number of issues need further investigation0.25

□ The nature of quark confinement

□ Matter-antimatter asymmetry of the Universe

Gravity, dark matter, numbers of flavors, etc.

- The rich hadronic spectra provide valuable information to disentangle the hadron inner structure and non-perturbative region of QCD.
- Precision measurements of hadron production help make QCD-related models more prophetically and test SM parameters.

Hadrons Spectrum

- Experiments at particle accelerators in last fifties and sixties created many hadrons except e, p, n → "hadronic zoo".
- Quark model established order in the hadronic zoo.

M. Gell-Mann, A schematic model of baryons and mesons: Phys.Lett. 8 (1964) 214-215

"Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc".

G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401

"In general, we would expect that baryons are built not only from the product of these aces, *AAA*, but also from $\bar{A}AAAA$, $\bar{A}\bar{A}AAAAA$, etc., where \bar{A} denotes an anti-ace. Similarly, mesons could be formed from $\bar{A}A$, $\bar{A}\bar{A}AA$, etc.".

- Suggested by self-coupling of gluons of QCD, glueballs and hybrids exist.
- Experimental searches for exotic hadrons have a long history.
- Recent high-quality data allows study properties of established mesons, and search for new states.

Experimental Approaches

- Symmetric e⁺e⁻ energy ٠
- E_{cm} = 2.0-4.95 GeV (tau-charm region)
- Peak luminosity 10^{33} cm⁻²s⁻¹
- ∫ *L* ~ 38 fb⁻¹ ٠
- To be upgraded in 2024 to increase luminosity at high c.m.s

- Asymmetric energy e⁺e⁻
- Belle: e^+ (8.0 GeV) e^- (3.5 GeV) , $\int L \sim 1 \text{ ab}^{-1}$
- Bellell: e⁺ (7.0 GeV) e⁻ (4.0 GeV)
- New luminosity world record, 4.7x10³⁴ cm⁻²s⁻¹ \succ
- \succ $\int L = 424 \text{ fb}^{-1}$

- Hadron Collider ٠
- Covering 2 < η < 5, forward rapidity
- 25% of $b\bar{b}$ pairs inside acceptance ٠
- Luminosity: 3 fb⁻¹ at $\sqrt{s} = 7,8$ TeV, 6 fb⁻¹ at $\sqrt{s} = 13 \text{ TeV}$

There are many experiments, sorry I can not cover them all

Production Processes

Take $c\bar{c}$ production as a example

Highlights in Hadron Production

• Running of fine structure constant $\Delta \alpha_{em}$

$$\Delta \alpha(s) = 1 - \alpha(0) / \alpha(s) = \Delta \alpha_{\text{lepton}}(s) + \Delta \alpha_{\text{had}}^{(5)}(s) + \Delta \alpha_{\text{top}}(s)$$

• $\Delta \alpha_{had}^{(5)}(s)$ should be calculated with R value:

$$\Delta \alpha_{\rm had}^{(5)}(s) = -\frac{\alpha s}{3\pi} \operatorname{Re} \int_{E_{\rm th}}^{\infty} \mathrm{d}s' \frac{R(s')}{s'(s'-s-i\varepsilon)}$$

• Muon anomalous magnetic moment a_{μ}

- SM prediction: $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Weak} + a_{\mu}^{Had}$
 - > Hadronic Vacuum Polarization (HVP) and Light-by-Light (HLbL) in a_{μ}^{Had} dominate uncertainty
- HVP contribution is calculated with R value using dispersion relation:

$$a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \frac{R(s)K(s)}{s^2}$$

Precision measurement of R value

$$R = \frac{N_{\rm had}^{\rm obs} - N_{\rm bkg}}{\sigma_{\mu\mu}^0 \mathcal{L}_{\rm int.} \varepsilon_{\rm trig} \varepsilon_{\rm had} (1 + \delta)}$$

- Very challenging to determine ε_{had}
- Two simulation models developed, consistent ISR-return $\sqrt{s'}$ spectrum.

- R value measured at 14 c.m. energies from 2.2324 to 3.671 GeV.
- Accuracy better than 2.6% below 3.1 GeV and 3.0% above.
- Larger than the pQCD prediction by 2.7σ in $3.4 \sim 3.6$ GeV.

Nucleon Electromagnetic Form Factors

• Nucleons are composite objects with inner structure. At low Q, perturbative QCD not possible.

 \Rightarrow Nucleon structure must be measured in experiments!

- Electromagnetic Form Factors are fundamental properties of the nucleon.
 - Connected to charge, magnetization distribution.
 - Crucial testing ground for models of the nucleon internal structure.

New Results of Nucleon EMFFs

€€SШ

- $e^+e^- \rightarrow n\bar{n}$ from 2.0-3.08 GeV, 647.9 pb⁻¹.
- γp coupling larger than γn coupling => consistent with theoretical predictions: VMD, Skyrme etc.
- Oscillation of reduced-|G| observed in neutron with a phase orthogonal to that of proton.

- $e^+e^- \rightarrow n\bar{n}$ from 1.884 to 2.007 GeV, ~30 pb⁻¹.
- $\sigma \approx 0.4$ nb below 2 GeV. Possible threshold effect.
- Reduced-|G| contracts the common proton /neutron oscillation frequency

Nat. Phys. 17, 1200–1204 (2021)

arXiv: 2206.13047

For details, see talk #4 in parallel session V (2)

Direct C-even production in e^+e^- annihlation

- The C-even states, *i.e.* η , $f_1(1285)$, χ_c , X(3872), can be produced directly from e^+e^- annihilation through two virtual photons or neutral current reaction.
- The production rate is predicted with the electronic width Γ_{ee} of the states.

- Revisit calculation with Large interference effects
 distortion of the total cross section
- Interference effects implemented in PHOKHARA
- BESIII is an ideal place for hunting $e^+e^- \rightarrow \chi_{c1}$
 - > Uncertainty of E_{cms} : ±0.05 MeV
 - Beam energy spread: (736 ± 27) keV

* ISR background: $e^+e^- \rightarrow \gamma \mu^+\mu^-$; ISR + QED signal (+Z⁰): $e^+e^- \rightarrow \gamma \mu^+\mu^- + e^+e^- \rightarrow \chi_{c1} \rightarrow \gamma J/\psi \rightarrow \gamma \mu^+\mu^-$

* $\theta_{\gamma/\mu}$: polar angle of γ/μ ; M χ_{c1} : nominal mass of χ_{c1} state

 $e^+e^- \rightarrow 1^{++}$

Xc1

First observation of χ_{c1} production

6. 0. 400

Nevt >

100

400

200

100

0

0.6

0.4

0.2

0.8

cos0,

arXiv: 2203.13782

- Direct production of $e^+e^- \rightarrow \chi_{c1}(1^{++})$ is observed with statistical significance > 5 σ ; Γ_{ee} =0.12^{+0.13}-0.08 eV and ϕ =205^{+15.4}-22.4 degree
- Interference pattern around the χ_{c1} mass is observed, as predicted
- New production method of C-even states (conventional or exotic) in e⁺e⁻ experiments

Production of *X*(3872)

• single-tag two-photon $\gamma\gamma^*$ interaction, 825 fb⁻¹

 Three X(3872) signal observed. Assuming Q² dependence of a cc meson model:

 $\tilde{\Gamma}_{\gamma\gamma}\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = 5.5^{+4.1}_{-3.8}(\text{stat.}) \pm 0.7(\text{syst.}) \text{ eV}$

• Prompt production from p - p collision

- Prompt X(3872) is suppressed relative to ψ(2S) as multiplicity increases
- Behavior consist with compact tetraquark.

C. Meng, H. Han, K. T. Chao, PRD 96, 074014 (2017)

Highlights in Hadron Spectroscopy

Glueballs and Hybrids

• Experimental evidence for three isovector states with $J^{PC} = 1^{-+}$:

 $\succ \pi_1(1400), \pi_1(1600), \pi_1(2015)$

16

- Charmonium decays are ideal hunting grounds for light glueballs and exotics
 - "Glue-rich" environment
 - > Clean high statistics data samples from e^+e^- production

$\underset{arXiv:2202.00621, 2202.00623}{\text{Observation of Exotic Isoscalar }\eta_1(1855) (1^{-+})}$

• 10B J/ψ , $J/\psi \rightarrow \gamma \eta \eta'$: quasi two-body decay amplitudes in $\gamma X(\rightarrow \eta \eta')$ and $\eta' X(\rightarrow \gamma \eta)$

Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$B.F.(\times 10^{-5})$	Sig.
$f_0(1500)$	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
$f_0(1810)$	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$f_0(2330)$	$2312{\pm}7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
$f_2(1565)$	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
$f_4(2050)$	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
0 ⁺⁺ PHSP	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$h_1(1415)$	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
$h_1(1595)$	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

- 1^{-+} in $\eta\eta'$ observed
 - > Consistent with 1⁻⁺ hybrid of LQCD calculation
 - The isoscalar 1⁻⁺ hybrid helps complete the hybrid multiplet, with isovector states.

$\texttt{FO}(1500)\&f_0(1710) \text{ from } J/\psi \text{ Radiative Decay}$

- LQCD predicts the lightest glueball lying in 1.5 and 1.7 GeV/ c^2 and $J^{PC} = 0^{++}$, with a large BF $\sim O(10^{-3})$.
- Supernumerary isoscalars of f₀(1370), f₀(1500), f₀(1710) => one scalar glueball candidate exists.

• These results support the hypothesis that $f_0(1710)$ has a large glueball component.

For details, see talk #1 in parallel session VIII (2)

Observation of *X*(2600) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

PRL 129, 042001 (2022)

• X(2600) observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$, >20 σ

BESIII

• Simultaneous fit of $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ mass spectra

BFs of sequential decay in $J/\psi \rightarrow \gamma X(2600)$:

Case	$f_0(1500)$	<i>X</i> (1540)
Events	24585 ± 1689	21203 ± 1456
BF (×10 ⁻⁵)	$3.09\pm0.21^{+1.14}_{-0.77}$	$2.69 \pm 0.19^{+0.38}_{-1.21}$

States in $\eta' \pi^+ \pi^-$ lineshape

Heavy "Nonstandard" Hadrons Candidates

• Large amount of experimental activity on the "nonstandard" heavy sector

New naming scheme arXiv: 2206.15233 e.g. $Z_{cs}(4000)^+$ $(c\bar{c}u\bar{s}, J^P = 1^+) \Rightarrow T^{\theta}_{\psi s1}(4000)^+$

21

X States: News on X(3872)

X(3872), the most well established X meson, observ •

$$J^{PC} = 1^{++}$$

• The ratio $\frac{\mathcal{B}(X/(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X/(3872) \rightarrow \pi^+ \pi^- J/\psi)}$ and $\frac{\mathcal{B}(X/(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X/(3872) \rightarrow \pi^0 \chi_{c1})}$ sensitive to physics interpretation[1]

• EFT predict
$$\frac{\mathcal{B}(X/(3872) \rightarrow \pi \pi \chi_{c0})}{\mathcal{B}(X/(3872) \rightarrow \pi^0 \chi_{c0})} \approx \mathcal{O}(10^{-3}) - \mathcal{O}(10^{-5})$$

based on molecular structure [2]

Interpretation	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$
Four-quark/molecule	NA	2.97
$\chi_{c1}(2P)$	0.0	0.0
$D^0\overline{D}^{0*}$	NA	2.84 to 2.98
$D^0\overline{D}^{0*} + D^+D^{-*}$	1.3 to 2.07	1.65 to 1.77
$D^0\overline{D}^{0*} + D^+D^{-*}$	NA	3.72
$D^{0}\overline{D}^{0*} + D^{+}D^{-*} + \chi_{c1}(2P)$	0.094	1.15

[1] PRD77,014013(2008), PRD78,094019(2008). EPJC81, 193(2021), PRD79, 094013(2009), PRD100, 094025(2019) [2] PRD79,094013(2009), PRD78, 094019(2008)

$$\frac{B \to K(J/\psi\pi^{+}\pi^{-})}{p\bar{p} \to (J/\psi\pi^{+}\pi^{-}) + \cdots} \qquad pp \to (J/\psi\pi^{+}\pi^{-}) + \cdots} \\ B \to K(J/\psi\pi^{+}\pi^{-})^{+} \cdots \qquad pp \to (J/\psi\pi^{+}\pi^{-}) + \cdots \\ B \to K(J/\psi\pi^{+}\pi^{-})^{0} \qquad e^{+}e^{-} \to \gamma(J/\psi\pi^{+}\pi^{-}) \\ B \to K(J/\psi\gamma) \qquad e^{+}e^{-} \to e^{+}e^{-}J/\psi\pi^{+}\pi^{-} \\ B \to K(J/\psi\gamma) \qquad e^{+}e^{-} \to e^{+}e^{-}J/\psi\pi^{+}\pi^{-} \\ \hline PRD 105, 072009 (2022) \\ \chi_{00}^{-}\pi^{+}\pi^{-} \int_{0}^{\sqrt{2}} \int_$$

 $\overline{\mathcal{B}(X(3872))} \rightarrow \pi^+\pi^-$

22

X States: $\gamma \gamma \rightarrow \gamma \psi(2S)$

• P-wave triplets near 3.9 GeV/c² remains puzzle, where X(3930), as a good candidate of $\chi_{c2}(2P)$, has a hyperfine splitting of 12 MeV/c² between $\chi_{c2}(2P)$ and X(3915)

- Evidence of X(3872) production in two-photon collisions
 => see p13.
- 0^{++} and 2^{++} can be produced in two-photon collisions and decay to $\gamma \psi(2S)$ via E1 transition.
- Evidence of structure R₁ near 3.92 GeV/c² => X(3915)and $\chi_{c2}(3930)$
- R₂ matches none of the known states, (mass agrees with HQSS-predicted^[1] 2⁺⁺ partner of X(3872), but width conflicts)

[1] F. K. Guo et al., PRD 88, 054007 (2013) M. Albaladejo, et al., EPJC 75, 547 (2015).

X States: New States in $D_s^+ D_s^-$

- 9 fb⁻¹ at LHCb, near threshold structure X(3960) in $B^+ \rightarrow D_s^+ D_s^- K^+$, 12σ , $J^P = 0^{++}$
- X(4140) accounts for the dip around 4.14 GeV
- If X(3960) and X(3915) the same particle? More measurement needed.

For details, see talk #4 in parallel session I(2)

Y States: New Precise Measurements

• $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from 3.773 to 4.700 GeV,~23 fb⁻¹

- Structure close to 4.0 GeV is better described with a BW than Exp.
- > Enhancement around 4.5 GeV ~ 3σ , $\psi(4415)$ or Y(4500)?

• $e^+e^- \to \pi^+\pi^-\psi(3686)$ from 4.01 to 4.700 GeV

- A continuous component is needed
- > First observation of Y(4660) at BESIII

₿€SⅢ

Y States: New States & Decay Modes

arXiv:2204.07800

arXiv:2203.05815

- Two resonances observed in $e^+e^- \rightarrow K^+K^-J/\psi$
 - ► Y(4230) firstly observed in K^+K^-J/ψ mode $0.02 < \frac{\mathcal{B}(Y(4230) \to K^+K^-J/\psi)}{\mathcal{B}(Y(4230) \to \pi^+\pi^-J/\psi)} < 0.26$

> Y(4500) not seen before (evidence in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$)

Cannot be assigned into any experimentally observed resonance

- Two resonances observed in $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823) \rightarrow \pi^+\pi^-\gamma\chi_{c1}$
 - Consistent with Y(4360) and Y(4660)
 - First observation of Y decaying to D-wave charmonium state

 $M[\psi_2(3823)] = 3823.12 \pm 0.43 \pm 0.13 \text{ MeV}/c^2$ $\Gamma[\psi_2(3823)] < 2.9 \text{ MeV} \text{ at } 90\% \text{ C.L.}$

Besile Y States: Y(4230)-Y(43xx)-Y(45xx)-Y(4660)

• Parameters of the peaks in e^+e^- cross sections

• Relations between X(3872) - Y(4230) - Zc(3900) states

- $Z_{cs}(3985)^-$ (aka $T_{\psi s1}(3985)^-$) in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$
- Modeled by an S-wave Breit-Wigner function:
 - > Mass: $(3985.2^{+2.1}_{-2.0} \pm 1.7) \text{ MeV/}c^2$
 - ▶ Width: $(13.8^{+8.1}_{-5.2} \pm 4.9)$ MeV

- Full amplitude analysis of $B^+ \rightarrow J/\psi \phi K^+$
- > $Z_{cs}(4000)^+$ (aka $T_{\psi s1}^{\theta}(4000)^+$): $I = \frac{1}{2}, J^P = 1^+$

►
$$Z_{cs}(4220)^+$$
 (aka $T_{\psi s1}(4220)^+$) : I = $\frac{1}{2}$, $J^P = 1^?$

	$Z_{cs}(4000)^+$	$Z_{cs}(4220)^+$	
Mass (MeV/ c^2)	$4003 \pm 6^{+4}_{-14}$	$4216 \pm 24^{+43}_{-30}$	
Width (MeV)	$131 \pm 15 \pm 26$	$233 \pm 52^{+97}_{-73}$	28

Z states: Strange Partners ccsd

- $Z_{cs}(3985)^0$ (aka $T_{\psi_{s1}}(3985)^0$) in $e^+e^- \to K_s^0 (D_s^+D^{*-} + D_s^{*+}D^-) + c.c$ decay, 4.6 σ
- Isospin partner of $Z_{cs}(3985)^+$

	Mass (MeV/c^2)	Width (MeV)
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8} \pm 4.3$
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0} \pm 1.7$	$13.8^{+8.1}_{-5.2} \pm 4.9$

• The slightly larger mass of $Z_{cs}(3985)^0$ consistent with theoretical predictions under molecular hypothesis or tetraquark hypothesis^[1].

[1] B. D. Wan and C. F. Qiao, NPB 968, 115450 (2021).

Open Heavy-Flavor Tetraquark: $c\overline{s}u\overline{d} \& c\overline{s}\overline{u}d$

- $B \rightarrow D\overline{D}K$ decays is unique to study structures in $D\overline{D}$ and charm-strange systems.
- $B^+ \to D^+ D^- K^+$ show structures in $D^- K^+$: $X_0(2900)$ aka $T_{cs0}(2900)^0$, $X_1(2900)$ aka $T_{cs1}(2900)^0$: $c\bar{d}s\bar{u}$

- First amplitude analysis of $B^+ \to D^- D_s^+ \pi^+ \& B^0 \to \overline{D}{}^0 D_s^+ \pi^+$, at LHCb with 9 fb⁻¹ data
- $D_s \pi$ well described by adding $J^P = 0^+ T^a_{c\bar{s}0}(2900)$
- Quark content: csud and csud
- Isospin partner $T^{a}_{c\bar{s}0}(2900)^{+}$ will be searched with $D^{+}_{s}\pi^{0}$

$$M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$$
$$\Gamma = 0.136 \pm 0.023 \pm 0.011 \,\text{GeV}$$

PRD 102,112003 (2020)

For details, see talk #1 in parallel session II (2) 30

Open Heavy-Flavor Tetraquark: ccud

- A narrow state in $D^0 D^0 \pi^+$ mass spectrum promptly in pp collision with 9 fb⁻¹ data, $T_{cc}(3875)^+$, 22 σ
- The state just below $D^{*+}D^0$ mass threshold
- The structure is described by a relativistic P-wave two-body BW function => $J^P = 1^+$

$$> \delta m_{BW} = m_{BW} - (m_{D^{*+}} + m_{D^0}) = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}/c^2$$
$$> \Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$$

- More properties of $T_{cc}(3875)^+$ is discussed.
- Unlike in X(3872), no suppression of prompt T_{cc}(3875)⁺ at high track multiplicities.

Fully Heavy System: cccc

For details, see talk #2, #3 in parallel session I(2).

32

Hidden Charmonium Pentaquark: ccuud

- $P_{\psi}^{N}(4450)$ and $P_{\psi}^{N}(4380)$ in $\Lambda_{b}^{0} \rightarrow J/\psi pK^{-}$ decays, with 3 fb⁻¹ LHCb data, >9 σ
- 9 times decay events, $P_{\psi}^{N}(4450) => P_{\psi}^{N}(4440)$ and $P_{\psi}^{N}(4457)$, new state $P_{\psi}^{N}(4312)$ discovered.

Weighted candidates/(2 MeV) 000 000 0001

200

Γ [MeV

 $9.8 \pm 2.7^{+}_{-} \frac{3.7}{4.5}$

 $20.6 \pm 4.9^{+8.7}_{-10.1}$

 $6.4 \pm 2.0^{+}_{-1.9}$

 $\Sigma_{c}^{+}\overline{D}^{0}$

data

background

P_c(4312)⁺

(95% CL)

(< 27)

(< 49)

(< 20)

 $1.11 \pm 0.33^{+0.22}_{-0.10}$

 $0.53 \pm 0.16^{+0.15}_{-0.13}$

PRL 115, 072001 (2015)

LHCb

 $m_{J/\psi p}$ [GeV]

 $P_{4}^{N}(4380)$

 $M \,[\,\mathrm{MeV}\,]$

 $4311.9 \pm 0.7^{+6.8}_{-0.6}$

 $4440.3 \pm 1.3^{+4.1}_{-4.7}$

 $4457.3 \pm 0.6^{+4.1}_{-1.7}$

State

 $P_{c}(4312)^{+}$

 $P_{c}(4440)^{+}$

 $P_{c}(4457)^{+}$

• Evidence for $P_{tb}^{N}(4337)$ in flavor-untagged $B_s^0 \rightarrow J/\psi p\bar{p}$ decays, with 9 fb⁻¹ LHCb data, **>3.1***σ*

For details, see talk #5, #6 in parallel session I(2) 33

Hidden Charmonium Pentaquark: ccuds

- Evidence $P_{\psi}^{\Lambda}(4459)$) in $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ decays, with 9 fb⁻¹ LHCb data, 3.1 σ
- Strange counterparts of P_{ψ}^{N} , at $\Xi_{c}^{0}D^{*0}$ threshold

- $P_{\psi}^{\Lambda}(4338)$ in $B^- \rightarrow J/\psi \Lambda \bar{p}$ decays, with 9 fb⁻¹ LHCb data, >10 σ
- $J^P = \frac{1}{2}^-$ preferred, close to $\Xi_c^+ D^-$ threshold

 $\Gamma_{P_{cs}} = 7.0 \pm 1.2 \pm 1.3 \, \text{MeV}$

Summary

- Very active and fruitful results in hadron physics
 - > Experiments are taking data: LHCb, BESIII, Belle II, ...
 - > Upgrade studies underway: BESIII: $\mathcal{L} \times 3$ above 4.6 GeV, LHCb: $\int \mathcal{L} \times 7$ after RUN4
- Various production accessible for hadron structure study
 - > Direct production in e^+e^- collision, photon-photon scattering, prompt production...
 - > New precision record, new production mechanism
- Solid experimental evidence of exotic states, in-depth property studies needed.
 - > Last "hadronic zoo" was sixty years ago => established quark model
 - > New "model" to order the "exotic hadronic zoo"?

感谢强子物理和味物理召集人、吕晓睿、何吉波、王小龙、李龙科等老师的帮助!

Heavy "Nonstandard" Hadrons Candidates

- New naming scheme arXiv: 2206.15233
 - T for tetra, P for penta
 - **Superscript**: based on existing symbols, to indicate isospin, parity and G-parity

• Hidden charmonium pentaquark

2021-

2019-

X(4685)

Charmonium (Like) spectroscopy

- Excellent platform to explore the QCD
- Fruitful results in past decade, a new territory to study exotic hadrons

• Tasks :

- Precisely measurement the transition
- **D** Search for the missing states
- Search for the new exotic states
- Determine J^{PC} for all known states

X States: New States in $J/\psi\phi$

- Rich structures in $J/\psi\phi$ mass spectrum
- In $B^+ \rightarrow K^+ J/\psi \phi$, X(4140) observed in $J/\psi \phi$ in CDF^[1], CMS^[2] and D0^[3], but not in Belle and BaBar^[4]
- BESIII found no evidence of $X(4140) \rightarrow J/\psi \phi$ via $e^+e^- \rightarrow \gamma X(4140)$ ^[5]
- Belle observe X(4350) in two-photon collision^[6], $J^{PC} = 0^{++}$ or 2^{++}

X States: New States in $J/\psi\phi$

LHCh

- 3 fb^{-1} data, six-dimensional amplitude analysis
- Four $J/\psi \phi$ structures observed:
 - ≻ Confirm *X*(4140) and *X*(4274), 1⁺⁺
 - ➤ Two 0⁺⁺ states: X(4500), X(4700)

- 9 fb⁻¹, six-dimensional amplitude analysis
- Confirmed four X states
- Two new states in $J/\psi \phi$
 - ≻ X(4685) 1⁺
 - ➤ X(4630) 1⁻ or 2⁻
- Two new states in $J/\psi K$

Open Heavy-Flavor Tetraquark: $\overline{c}d\overline{s}u$

• $B \rightarrow D\overline{D}K$ decays is unique to study structures in $D\overline{D}$ and charm-strange systems.

- First amplitude analysis of $B^+ \rightarrow D^+D^-K^+$, at LHCb with 9 fb⁻¹ data
- > In $D\overline{D}$ structure:
 - Both spin-0 and spin-2 are needed
 - *χ*_{c0}(3930) consistent with *X*(3915) observed in *J*/ψω
- > In D^-K^+ strucute:
 - Both spin-1 and spin-0 are needed
 - Quark content: *cdsu*

	Resonance	Mass (GeV/c^2)	Width (MeV)
	$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
	$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$
0)	$^{0}X_{0}(2900)$	$2.866 \pm 0.007 \pm 0.002$	$57 \pm 12 \pm 4$
0)	$^{0}X_{1}(2900)$	$2.904 \pm 0.005 \pm 0.001$	$110 \pm 11 \pm 4$