

- HEP: A highly accomplished dynamic field
- HEP at a cross-road
- DPF Snowmass 2021: Building the future

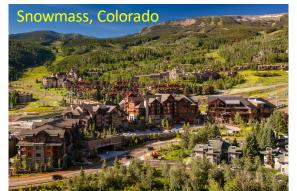
HEP: A highly accomplished field Un-interrupted discoveries for many decades

STANDARD MODEL OF ELEMENTARY PARTICLES

HEP at a Cross-Road

"When you come to a fork in the road, take it!" – Yogi Berra

Good news:


- The SM is experimentally tested to a high precision ~ TeV.
 It can be valid to an exponentially high scale, even to M_{PL} !
- DM discovered in astro/cosmological observations \rightarrow BSM !
- Neutrino mass/mixing established \rightarrow BSM physics !

Challenge: No clear argument for the next physics scale !

$arLambda_{ ext{BSM}}$, $\mathsf{M}_{ ext{DM}}$, $\mathsf{M}_{m{v}}$?

We must explore all directions!

Snowmass: A Community Exercise

In June 28 - July 16, 1982, the APS DPF organized an workshop, to "assess the future of elementary particle physics, to explore the limits of our technological capabilities, and to consider the nature of future major facilities for particle physics in the US."

DPF Chair Charles Baltay:

"... The 1982 DPF Summer Study was the first attempt in recent years to bring together physicists from the whole country to consider the future of our field from the point of view of the best overall national program. The DPF Executive Committee feels that this summer study was sufficiently useful in this last respect to hold similar summer studies at appropriate times in future years."

This spearheaded the SSC exploration, and more. The tradition continued.

Every 7-10 years, DPF leads community studies, "Snowmass" Snowmass Goals:

To define the most important questions for the field of particle physics; to identify promising opportunities to address them.

--- it is a science process, with breadth and depth!

Last Snowmass (2013) highly successful:

(Report by December 2013)

https://www.slac.stanford.edu/econf/C1307292/

essential inputs to P5

"Particle Physics Project Prioritization Panel" (P5) A subpanel of HEPAP

- Projects prioritized according to funding scenarios
- Science research directions in HEP
- Federal funding profile for the current and near-future projects in the decade.

P5 Report, May 2014

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

Distilled from the Snowmass 2013 inputs, five Science Drivers for the field:

- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- Explore the unknown: new particles, interactions, and physical principles.
- 29 recommendations
- Projects prioritized according to funding scenarios

As a result, highly impactful on the

- Directions/achievements in HEP
- Federal funding profile enhanced for the current and near-future projects in the decade.

Report of the Particle Physics Project Prioritization Panel (P5)

May 2014

Snowmass 2021 organization https://snowmass21.org/

Steering Group 2022

DPF 2022 Chair: Joel Butler (FNAL) Chair-elect: R. Sekhar Chivukula (UCSD) Vice Chair: André de Gouvêa (Northwestern) 2021 Chair: Tao Han (U Pitt) 2020 Chair: Young-Kee Kim (U Chicago) 2019 Chair: Prisca Cushman (U Minnesota)

DPB: Sergei Nagaitsev (FNAL) DNP: Yury Kolomensky (LBNL) DAP: Glennys Farrar (NYU) DGRAV: Nicolas Yunes (UIUC)

Glennys Farrar Yury Kolomensky Sergei Nagaitsey

Nicolas Yunes

Advisory Group 2022

- **DPF Executive Committee**
 - Secretary/Treasurer: Tulika Bose
 - Councilor: Bob Bernstein
 - Member-at-Large: Mary Bishai _
 - Member-at-Large: Lauren Tompkins —
 - Member-at-Large: Mayly Sanchez —
 - Member-at-Large: Gordon Watts _
 - Member-at-Large: Heather Gray
 - Member-at-Large: Kendall Mahn
 - Early Career Member: Julia Gonski
- **Editor and Communication**
 - Editor Michael Peskin
 - Communication Bob Bernstein
 - Technical Liaison Sergei Chekanov

- Representatives from the Int. Community
 - Africa / Middle East Azwinndini Muronga, Nelson Mandela Metropolitan Univ, South Africa
 - Asia / Pacific Atsuko Ichikawa, Kyoto University, Japan Xinchou Lou, IHEP, China
 - Canada Heather Logan, Carleton University
 - Europe / Russia Val Gibson, Cavendish Laboratory, UK Berrie Giebels, CNRS, France Michelangelo Mangano, CERN
 - Latin America Claudio Dib, Universidad Tecnica Federico Santa Maria, Chile

Snowmass 2021 organization

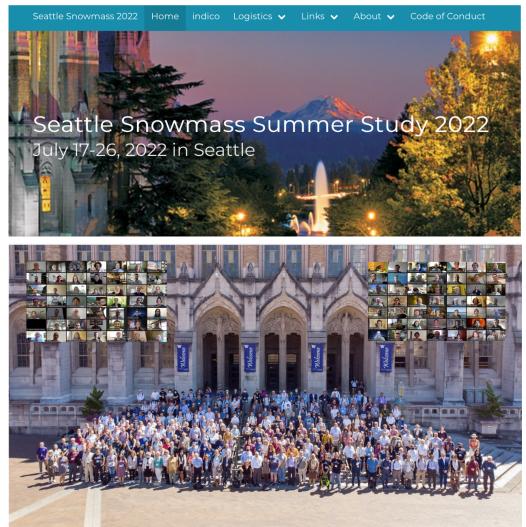
10 Frontiers	80 Topical Groups
Energy Frontier	Higgs Boson properties and couplings, Higgs Boson as a portal to new physics, Heavy flavor and top quark physics, EW Precision Phys. & constraining new phys., Precision QCD, Hadronic structure and forward QCD, Heavy Ions, Model specific explorations, More general explorations, Dark Matter at colliders
Frontiers in Neutrino Physics	Neutrino Oscillations, Sterile Neutrinos, Beyond the SM, Neutrinos from Natural Sources, Neutrino Properties, Neutrino Cross Sections, Nuclear Safeguards and Other Applications, Theory of Neutrino Physics of Applications Sources, Neutrino Detectors
Frontiers in Rare Processes & Precision Measurements	Weak Decays of b and c, Strange and Light Quarks, Fundamental Physics and Stander Phys
Cosmic Frontier	Neutrino Cross Sections, Nuclear Safeguards and Other Applications, Theorem Physics, Andrean Poper Res, Neutrino Cross Sections, Nuclear Safeguards and Other Applications, Theory of Neutrino Physics, Andrean Poper Res, Weak Decays of b and c, Strange and Light Quarks, Fundamental Physics and Stan Performance Physics, Andrean Poper Res, Number Violation, Charged Lepton Flavor Violation, Dark Sector at Low For Converse, Dark Caceleration: The Modern Universe, Dark Matter: Wave-like, Dark Matter, Converse, Converse, Converse, Caceleration: The Modern Universe, Dark Energy & Cosmic Acceleration, Careler Converse, Cosmic Acceleration: The Modern Universe, Dark Energy & Cosmic Acceleration, Careler Converse, Cosmic Acceleration: The Modern Universe, Dark Energy & Cosmic Acceleration, Complementarity of Probes and Notice Converse, Cosmic Acceleration: The Modern Universe, Dark Energy & Cosmic Acceleration, Complementarity of Probes and Notice Converse, Collider phenomenology, BSM model building, Astro-particle Cosmic Accelerations, Accelerators for Electroweak and Higgs Physice Converse, Cosmic Accelerators for Neutrinos, Accelerators for Electroweak and Higgs Physice Converse, Solid State Detectors & Tracking, Trigger and DAQ, Micro Pattern Gas and Physice Converse, Solid State Detectors & Tracking, Trigger and DAQ, Micro Pattern Gas and processing resource access (Facility and Infrastructure R&D), End user analysis Underground Facilities for Neutrinos, Underground Facilities for Cosmic Frontier, Underground Detectors Applications & Industry, Career Pipeline & Development, Diversity & Inclusion, Physics Education, Public Education & Outreach, Public Policy & Government Engagement
Theory Frontier	String theory, quantum gravity, black of TOP Farly Markes, CFT and formal QFT, Scattering amplitudes, Lattice gauge the second string amplitudes, Lattice gauge the second string string building, Astro-particles and the second string
Accelerator Frontier	Beam Physics Physics Physics Physics Beyond Colliders & Rare Processes, Advanced Accelerator Physics CONNER Liaison Physics Beyond Colliders & Rare Processes, Advanced Accelerator CONNER Liaison Physics RF, Magnets, Targets/Sources
Instrumentation Front 20 Fron	THE FRONTES ON Detectors, Solid State Detectors & Tracking, Trigger and DAQ, Micro Pattern Gas anetry, Electronics/ASICS, Noble Elements, Cross Cutting and System Integration, Radio Detection
Computational Fronti	Aperimental Algorithm Parallelization, Theoretical Calculations and Simulation, Machine Learning, Storage and processing resource access (Facility and Infrastructure R&D), End user analysis
Underground Facilities and Infrastructure Frontier	Underground Facilities for Neutrinos, Underground Facilities for Cosmic Frontier, Underground Detectors
Community Engagement Frontier	Applications & Industry, Career Pipeline & Development, Diversity & Inclusion, Physics Education, Public Education & Outreach, Public Policy & Government Engagement
Snowmass Early Career	to represent early career members and promote their engagement in the Snowmass 2021 proces to build a long-term HEP early career community
Broad cove	rage/connection in science and global community!

Broad coverage/connection in science and global community! Tao Han @ CPS

Snowmass 2021 activities kicked off

April 18 - 21, 2020 (APS April Meeting, DC, virtual)

- ~ 300 participants
- All frontiers / liaisons joined the preparatory activities

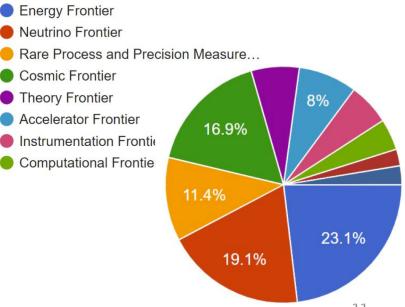

Snowmass Community Planning Meeting

Oct. 5-8, 2020 (FNAL, virtual)

- ~ 3,000 people registered !
- 63 submissions to the "Voices from the Community"
- 25 Plenary speakers; 5 "Future Facilities" panelists
- 101 Breakout sessions
- 1,574 LOIs considered
- Call for contributed (white) Papers by March 2021

Heading to Community Summer Study (CSS) →
 Snowmass 2021 in July 2021 @ UW-Seattle !
 But the COVID-19 pandemic hit hard
 → Snowmass slowdown/paused for 8 months!

Community Summer Study (CSS): Snowmass 2021 July 17 – 26, 2022 @ UW – Seattle http://seattlesnowmass2021.net


Participants

Number of in-person participants: 743

Number of virtual participants: 654

Local Organizing Committee/Volunteer/Press: 58

Total number of participants: 1397

Community Summer Study SN X WMASS July 17-26 2022, Seattle

NOTE: This schedule is								Gordon Wa	atts Sh	nih-Chieh Hsu		
	Saturday, July 16	Sunday, July 17	Monday, July 18	Tuesday, July 19	Wednsday, July 20	Thursday, July 21	Friday, July 22	Saturday, July 23	Sunday, July 24	Monday, July 25	Tuesday, July 26	
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	
7:30 AM												
8:00 AM		Registration	Registration									National Study
8:30 AM												NAS EPP Decadal study
9:00 AM										Snowmass Summary (Program		
9:30 AM			Parallel	Parallel	Parallel	Parallel	Parallel	Parallel				
10:00 AM		Introductory Plenary									Snowmass Summary (Program under	
11:00 AM									Parallel		development)	
12:00 PM								land 0			Closing Remarks	
		Lunch	Lunch, Poster &	Lunch, Poster &	Lunch, Poster & Exhibit	Lunch	Lunch	Lunch & Communicating HEP	Lunch	Lunch		
1:00 PM		Lunch	Exhibit	Exhibit	Lunch, Poster & Exhibit	Eulion	Lunch	to the public and the govt.	Euron			
2:00 PM			Parallel 1: Al/ML Parallel 2:	Panel: Careers and Training the Next	ning the Next Parallel 2: Rare	Colloquium on Rare Processes and	Colloquium on Underground Physics	Colloquium on Energy Frontier Physics	Presentation: Snowmass Early Career	Panel: Interconnections with other fields		
3:00 PM		Introductory Plenary	Underground	Generations		Precision Measurements						
3:30 PM					Colloquium on				Parallel 1:	Coffee		
4:00 PM		Coffee	Parallel 1: The next accelerators	Parallel 1: Lepton Colliders			Colloquium on new	Colloquium on	Colloquium on	Underrepresented Minorities		
4.001 1			Parallel 2: LQCD	Parallel 2: Cosmic	Instrumentation	Accelerators and R&D	Theory	Computing	Parallel 2: Instrumentation projects	Talks: National, International Leaders		
5:00 PM	Pre-Registration	Planning US HEP:	Coffee	Coffee		Coffee	Coffee	Coffee	Coffee	Loudoro		
	Tro Regionation	past, present, future		Colloguium on		Colloquium on Cosmic						
6:00 PM			DEI: Talks and Panel	Community		Frontier Probes of	Colloquium on Neutrino Physics	Quantum Information Science in HEP	talks DOE, NSF, FNAL Director,	Panel International Status and Plans		
				Engagement		Fundamental Physics	·····,-···		other US labs			
7:00 PM												
			Reception & Poster		Adam Riess Public	Physics Slam						
8:00 PM			& Industry Partners		Lecture	Physics Slam		Colliderscope				
				stry Networkng			Conference Dinner					
9:00 PM							Conference Diffiel					
Q /7	/22				Tao Har	a cps					12	

As Snowmass 2021 is wraping up: My overview

Path ahead:

- High Energy frontier & Accelerator technology
- Neutrino frontier
- Precision and rare processes
- Cosmic frontier
- Theory frontier
- Computational frontier
- Instrumentation & Detector technology
- Underground labs
- Community engagement
- Plus: Snowmass early career group

EF will explore the TeV energy scale and beyond. Our sharply focused agenda includes understanding the heaviest particles of the Standard Model (SM), as well as exploring physics beyond the SM to discover new particles and interactions, including unraveling the mystery of dark matter.

Meenakshi Narain (Brown U)

Co-Conveners

Laura Reina (FSU)

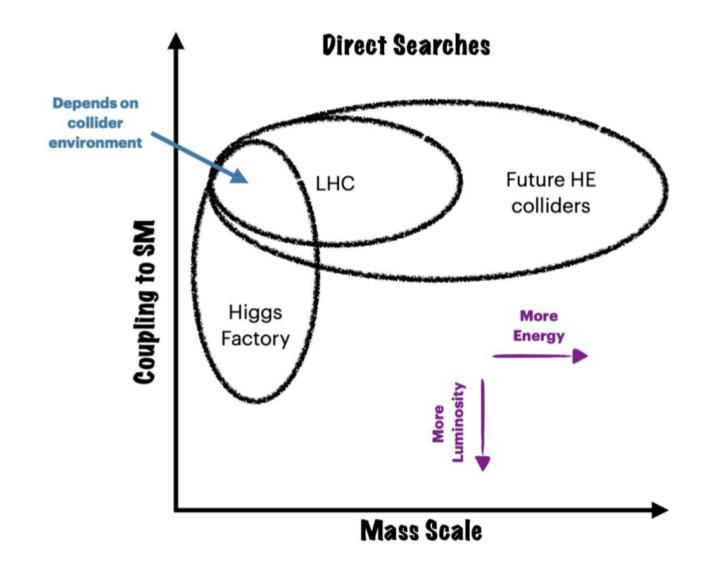
Alessandro Tricoli (BNL)

Торіса	l Group		Topical Group co-Conveners					
EF01		Higgs Boson properties and couplings	Sally Dawson (BNL)	Andrey Korytov (U Florida)	Caterina Vernieri (SLAC)			
EF02		Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook)	Isobel Ojalvo (Princeton)				
EF03	EW Physics	Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU)	Doreen Wackeroth (Buffalo)				
EF04		EW Precision Phys. & constraining new phys.	Alberto Belloni (Maryland)	Ayres Freitas (Pittsburgh)	Junping Tian (Tokyo)			
EF05		Precision QCD	Michael Begel (BNL)	Stefan Hoeche (FNAL)	Michael Schmitt (NW)			
EF06	QCD and Strong Interactions	Hadronic structure and forward QCD	Huey-Wen Lin (MSU)	Pavel Nadolsky (SMU)	Christophe Royon (Kansas)			
EF07	interactions	Heavy lons	Yen-Jie Lee (MIT)	Swagato Mukherjee (BNL)				
EF08		Model specific explorations	Jim Hirschauer (FNAL)	Elliott Lipeles (UPenn)	Nausheen Shah (Wayne State)			
EF09	BSM	More general explorations	Tulika Bose (UW-Madison)	Zhen Liu (Maryland)	Simone Griso (LBL)			
EF10		Dark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago) Anto	onio Boveia (Ohio State)			

Energy Frontier: explore the TeV energy scale and beyond Through the breadth and multitude of collider physics signatures

		α_{s}						
	W/Z mass	5 Flavor physics		pdf				
W/Z couplings			Intera	ong action erties	Jets	5		
Multibosons	EW							
	Gauge	Big Questions		Avi	on liko	norti	alac	
Iller and lines	Bosons	Evolution of early Univ	/erse	erse Axion-li			ke particles	
Higgs couplings		Matter Antimatter Asym	metry	/				
Higgs mass	Nature of Higgs	Nature of Dark Matt Origin of Neutrino M			Direct		Missing E/p	
Higgs CP	0111880	Origin of EW Scale			Production Dark Matt		Long lived particles	
Rare decays	Тор	Origin of Flavor Exploring the Unkn		New Particl		SUSY	Y	
Ton mass	Physics			Interacti	ions	Heavy gauge bosons		
Top mass			Symme		ries	ies Leptoquarks		
	Top spin	FCNC Ne	ew scala	rs H	leavy r	neutri	nos	

Energy Frontier Machines


Discoveries at the Energy Frontier are enabled by the development of new accelerators and detector instrumentation.

EF explorations should proceed along two main complementary directions:

- Study known phenomena at high energies looking for indirect evidence of BSM physics
 - Need factories of Higgs bosons (and other SM particles)
 - Need high precision to probe the TeV scale and beyond
 - \rightarrow Need both luminosity and energy

Search for direct evidence of BSM physics at the energy frontier

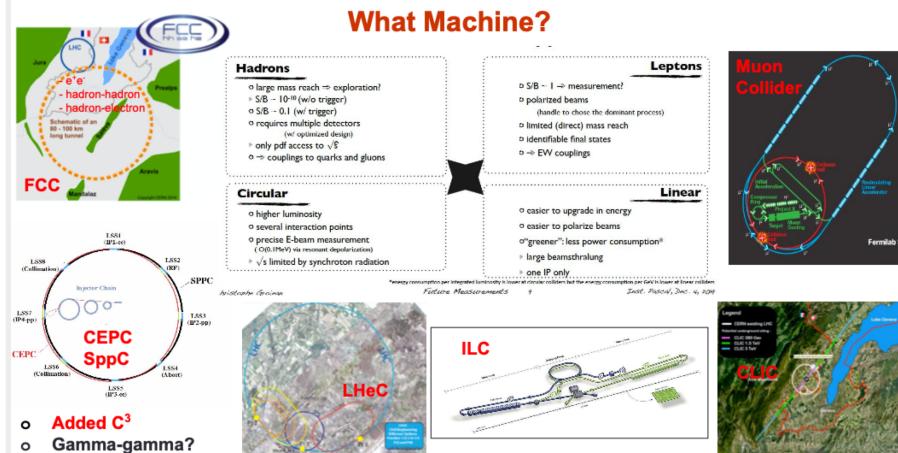
- Need to explore the multi-TeV scale \rightarrow Need energy
- Need to explore what LHC/HL-LHC may have difficulty exploring \rightarrow Need luminosity

Accelerator Frontier

AF activities include discussions on highenergy hadron and lepton colliders, highintensity beams for neutrino research and for the "Physics Beyond Colliders", accelerator technologies, science, education and outreach.

(LBNL)

Co-Conveners


Tor Raubenheimer (SLAC)

Vladimir Shiltsev (FNAL)

Topical	Group	Topical Group co-Conv	eners	
AF01	Beam Phys & Accel. Education	Z. Huang (Stanford)	M. Bei (GSI)	S. Lund (MSU)
AF02	Accelerators for Neutrinos	J. Galambos (ORNL)	B. Zwaska (FNAL)	G. Arduini (CERN)
AF03	Accelerators for EW/Higgs	M. Ross (SLAC)	Q. Qin (IHEP, Beijing)	Georg Hoffstaetter (Cornell)
AF04	Multi-TeV Colliders	³ M. Palmer (BNL)	A. Valishev (FNAL)	N. Pastrone (INFN, Torino)
AF05	Accelerators for PBC and Rare Processes	E. Prebys (UC Davis)	M. Lamont (CERN)	Richard Milner (MIT)
AF06	Advanced Accelerator Concepts	C. Geddes (LBNL)	M. Hogan (SLAC)	P. Musumeci (UCLA)
AF07	Accelerator Technology R&D			
	Sub-group RF	E. Nanny (SLAC)	S. Posen (FNAL)	H. Weise (DESY)
	Sub-Group Magnets	G. Sabbi (LBNL)	S. Zlobin (FNAL)	S. Izquierdo Bermudez (CERN)
	Sub-Group Targets/Sources	C. Barbier (ORNL)	Y. Sun (ANL)	F. Pellemoine (FNAL)

Implementation Task Force (ITF) established

o Advanced colliders?

0

ITF report:

(ITF = Implementation Task Force @ AF)

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Multi-TeV colliders (> 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$
			e^-/e^+	ab^{-1}
HL-LHC	pp	$14 { m TeV}$		6
ILC and C ³	ee	$250 { m ~GeV}$	$\pm 80/\pm 30$	2
c.o.m almost		$350~{\rm GeV}$	$\pm 80/\pm 30$	0.2
similar		$500 { m GeV}$	$\pm 80/\pm 30$	4
		$1 { m TeV}$	$\pm 80/\pm 20$	8
CLIC	ee	$380 {\rm GeV}$	$\pm 80/0$	1
CEPC	ee	M_Z		60
		$2M_W$		3.6
		$240~{\rm GeV}$		20
		$360~{\rm GeV}$		1
FCC-ee	ee	M_Z		150
		$2M_W$		10
		$240~{\rm GeV}$		5
		$2 M_{top}$		1.5
muon-collider (higgs)	$\mu\mu$	$125~{\rm GeV}$		0.02

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
			. e^-/e^+	ab^{-1}
HE-LHC	$_{\rm pp}$	$27 { m ~TeV}$		15
FCC-hh/SppC	$_{\rm pp}$	$100 { m TeV}$		30
LHeC	ep	$1.3 { m TeV}$		1
FCC-eh		$3.5~{\rm TeV}$		2
CLIC	ee	$1.5~{\rm TeV}$	$\pm 80/0$	2.5
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5
High energy muon-collider	$\mu\mu$	$3 { m TeV}$		1
		$10~{ m TeV}$		10

Timelines is taken from the ITF report from AF.

From the ITF Report Draft: Higgs factories

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st Physics	Cost Range (2021 B\$)	Electric Power (MW)		
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280		
ILC-0.25	0.25	2.7	0-2	<12	7-12	110		
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110		
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110		
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150		
			· ·					
	FCCe	ee: 2-4 IPs		Estimated				
		Cs: 1 IP		Total Project Cost				
Disclaimer: lumin		ower consur	nption	No escalation				
l imer lumin	osity and	wed by ITF		No contingency				
Disclaimer: lumin values have not	been revie	V • -						
Values			21	but in th	e same rang	e category		
FCChb-100	100	30	>10	>25	30-50	~560		

From the ITF Report: HE colliders

	CME (TeV)	Lumi per IP	Years, pre- proiect	Years to 1 st	Cost Range	Electric Power			
Disclaimer: luminosity and power consumption Values have not been reviewed by ITF MC-3/14: 2 IPS FCChh: 2-4 IPS MC-3/14: 2 IPS									
CERC(ERL)	0.24	078	5-10	19-24	12-30	90			
CLIC-3	3	5.9	3-5	19-24	18-30	~550			
ILC-3	3	6.1	5-10	19-24	18-30	~400			
MC-3	3	2.3	>10	19-24	7-12	~230			
MC-FNAL	6-10	20	>10	19-24	12-1 8	O(300)			
MC-10-IMCC	10-14	20	> 10	>25	12-18	O(300)			
FCChh-100	100	30	>10	>25	30-50	~560			

NEUTRINO FRONTIER ORGANIZATION

- Conveners:
 - Patrick Huber (Virginia Tech)
 - Kate Scholberg (Duke)
 - Elizabeth Worcester (BNL)

Topical Groups

- NF01: Neutrino Oscillations
- NF02: Understanding Experimental Neutrino Anomalies
- NF03: Beyond the SM
- NF04: Neutrinos from Natural Sources
- NF05: Neutrino Properties
- NF06: Neutrino Interaction Cross Sections
- NF07: Applications
- NF08→TF11: Neutrino Theory
- NF09: Artificial Neutrino Sources
- NFI0: Neutrino Detectors
- +liaisons to all other frontiers & SEC

See NF wiki – <u>https://snowmass21.org/neutrino/start</u> – for names of topical group conveners, names of liaisons, report drafts, and all things NF

The science drivers for NF

- What are the neutrino masses?
- Are neutrinos their own antiparticles?
- How are the masses ordered?
- What is the origin of neutrino mass and flavor?
- Do neutrinos and antineutrinos oscillate differently?
- Discovering new particles and interactions
- Neutrinos as messengers

Significant growth in activity since last Snowmass

MAJOR THEMES IN NEUTRINO FRONTIER

- A defining and somewhat unique aspect of NF is breadth and balance of effort across a wide range of physics topics, timescales, sizes, and costs, with significant need for collaboration with other frontiers and across boundaries of what is typically considered particle physics
- Physics beyond the (3-neutrino) Standard Model is emerging as a major focus of NF – this includes investigation of anomalies in neutrino oscillation measurements, precision measurements of neutrino oscillation that are sensitive to new particles and interactions, and use of neutrino experiments to search for other new physics, such as dark matter
- Use of neutrinos as messengers carrying information about otherwise inaccessible systems, particularly as participants in multi-messenger astronomy, is a growing area of interest in NF

MAJOR THEMES IN NEUTRINO FRONTIER

- DUNE/LBNF is the largest project in the NF portfolio, with extensive investment from the US and international partners to make precision neutrino oscillation measurements as well as a broad program of astrophysics topics and BSM searches. Snowmass/P5 will be particularly focused on the 2nd phase of DUNE, which is necessary to achieve the full DUNE physics scope, and which also offers opportunities to expand the physics scope beyond that initially envisioned
- There is significant synergy with other frontiers/fields in detector, accelerator, and computing development
- Community engagement is critical for the success of NF
- Early career scientists are central to all of the ongoing and planned research in NF