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Scattering amplitudes

In past 30 years, significant progress has been made in 
the studies of scattering amplitudes.

Amplitudes



Feynman diagram

• universal 
• simple rules 
• intuitive picture

Standard textbook method:



Feynman diagram

“Like the silicon chips of more recent years, the Feynman diagram 
was bringing computation to the masses.”  

                                                                        — Schwinger



Feynman diagram

“Like the silicon chips of more recent years, the Feynman diagram 
was bringing computation to the masses. Yes, one can analyze 
experience into individual pieces of topology. But eventually one 
has to put it all together again. And then the piecemeal approach 
loses some of its attraction.”  

                                                                        — Schwinger



Feynman diagram

n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

Practical application can be very complicated.



n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

n-gluon MHV tree amplitudes: [Parke, Taylor, 1986]

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

Surprising simplicity
Practical application can be very complicated.

Written in spinor helicity formalism (Chinese Magic) 
by Xu, Zhang, Chang 1984



Lessons from modern amplitudes

Methodologically:Conceptually:

Such simplicity is totally unexpected using traditional Feynman diagrams.

New structures and 
new formulations

 New powerful 
computational methods



Modern amplitudes methods

“A Renaissance of the S-Matrix Program”

S-matrix program

Wheeler 1937 
Heisenberg 1943

S-matrix bootstrap by 
Chew, Mandelstam, etc 
1950s-1960s

Modern amplitudes 
On-shell methods



S-matrix program

“The S-matrix is a Lorentz-invariant analytic function of all 
momentum variables with only those singularities required 
by unitarity.” 

“One should try to calculate S-matrix elements directly, 
without the use of field quantities, by requiring them to 
have some general properties that ought to be valid, .…”  

— Eden et.al, “The Analytic S-matrix”, 1966



S-matrix bootstrap

Figure 1: Unitarity implies the optical theorem.

Unitarity equation. For general final states, one can obtain the generalized optical
theorem, see also Figure 1

� (hf |T |ii � hf |T †
|ii) =

X

X

hf |T †
|XihX|T |ii (2.9)

2.2 Analyticity

S-matrix are analytic functions determined by its singularities. These singularities include
poles and branch cuts. The maximally analyticity of S-matrix requires that all such
singularities are given by the unitarity of S-matrix.

Let us consider the four-scalar amplitudes as an example

A4(p1p2 ! p01p
0
2) = hp01p

0
2|T |p1p2i (2.10)

From the unitarity of S-matrix, one has the equation

hp01p
0
2|p1p2i =

X

X

hp01p
0
2|S

†
|XihX|S|p1p2i (2.11)

or equivalently, similar to the derivation of optical theorem, as

hp01p
0
2|T |p1p2i � hp01p

0
2|T

†
|p1p2i =

X

X

hp01p
0
2|T

†
|XihX|T |p1p2i (2.12)

where |Xi represents all possible on-shell physical states.
If the S-matrix satisfies the symmetry

hp01p
0
2|S|p1p2i = hp1p2|S|p

0
1p

0
2i , (2.13)

the left-hand side of (2.12) is twice the imaginary part the unitarity equation becomes

2 ImA4 = DiscA4 = hp01p
0
2|T |p1p2i�hp01p

0
2|T

†
|p1p2i =

X

X

hp01p
0
2|T

†
|XihX|T |p1p2i (2.14)

See [8] for more discussion on this point.
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matrix program: the unitarity, the analyticity, and the dispersion relations. We explain
how these properties can be used to restrict and compute S-matrix. We will also provide
an example of how to use this strategy to compute a Feynman integral. The modern
on-shell methods are di↵erent in many aspects in the practical applications, as well we
will see in next sections. But fundamentally there is a similarity between the two, since
both are based on the on-shell formalism. Therefore, it is instructive to understand both
methods.

2.1 Unitarity

What is unitarity? Unitarity means that the S-matrix is unitarity, which is a mathe-
matical notation. The physical meaning is the “conservation of probability” in a scattering
process.

1 =
X

f

Pfi =
X

f

|hf |S|ii|2 =
X

f

hi|S†
|fihf |S|ii = hi|S†S|ii (2.1)

since this is true for any |ii, we have1

S†S = 1 = SS† . (2.2)

Alternatively, consider the

| (t)i = e Ht
| (0)i = S| (0)i , (2.3)

since
h (0)| (0)i = h (t)| (t)i = h (0)|S†S| (0)i . (2.4)

which also leads to
S†S = 1 = SS† . (2.5)

Optical theorem. The unitarity of S-matrix has powerful implications. For a free
theory, S-matrix is trivially identity matrix, S = 1. So let us consider the non-trivial part
in theory with interactions. We expand

S = 1 + T (2.6)

where T is called the transfer matrix. Unitarity of S-matrix implies that

� (T � T †) = T †T (2.7)

and
� (hi|T |ii � hi|T †

|ii) =
X

X

|hX|T |ii|2 = �i,tot (2.8)

This is the well-known optical theorem.

1Note that the conservation of probability applies to both summing over the final and initial states
which gives S†S = 1 and SS† = 1 respectively.
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Unitarity:

Figure 3: Dispersion integral.

review the Cauchy formula:

F (z) =
1

2⇡

I

C

dz0

z0 � z
F (z0) (2.19)

where C is a contour in the complex plane that does not enclose any singularity of F (z).
Consider again A4 and suppose there is no pole, one can choose the contour as shown

in Figure 3, and it is straightforward to obtain that

A(s) =
1

2⇡

Z +1

s+

ds0

s0 � s
DiscA(s0) +

1

2⇡

Z
s
�

�1

ds0

s0 � s
DiscA(s0) (2.20)

This illustrate one central part of the S-matrix program:

Unitarity =) Im[A]

Dispersion relation =) A

Another important information that is need to solve the dispersion relation is the asymp-
totic behavior of A, which is the goal of Regge theory. We will not discuss about this
here.

An application for computing Feynman integrals

The above strategy can be used to compute Feynman integrals. As an example, we
consider a simple massless scalar bubble integral:

I2(P
2) =

Z
dDl1
(2⇡)D

1

l2(l � P )2
, (2.21)

and we use dimensional regularization with D = 4� 2✏.
The first step is to apply the unitarity to compute the discontinuity

Disc[I2(P
2)] =

Z
dDl1
(2⇡)D

(�2⇡ )�(l2)(�2⇡ )�((l � P )2) = �
(P 2)�✏

(4⇡)2�2✏

⇡
3
2�✏

�(32 � ✏)
. (2.22)
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Dispersion relation:

(plus possible poles 
and asymptotic 
contributions)



A bubble-integral example

Figure 3: Dispersion integral.
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Figure 4: The contour integral for the I2.

In the second step, one can compute the full integral using dispersion relation. We consider
s = P 2 < 0, and the contour can be chosen as shown in Figure 4. One has

I2(s) =
1

2⇡

Z 1

0

dt

t� s
Disc[I2(t)] =

(4⇡)
D
2

(�s)�✏
�(✏)�2(1� ✏)

�(2� 2✏)
(2.23)

where one can use the formula
Z 1

0

dt
tx/2 � 2

t� s
= (�s)

x
2�2 �

�x
2
� 1

�
�
�
2�

x

2

�
. (2.24)

One can easily compute this bubble integral using for example Feynman parametrization
and find the same expression. Such dispersion method has played a role in computing
Feynman integrals in early days, and interested reader can find more examples for two-
loop integrals in [9].

3 Pure Yang-Mills theory

In this lecture we will mainly use amplitudes in the pure YM theory as examples for
introducing the on-shell method. This section will give a brief review of the theory which
will also help to set up some notations.

The action of Yang-Mills theory is

L = �
1

4
F a

µ⌫
F a,µ⌫

�
1

2⇠
(@µAa

µ
)2 + c̄a(�@µDab

µ
)cb , (3.1)

which contains the gluon fields Aa

µ
and the ghost fields ca, c̄a. One can derive the Feynman

rules from the action. For example, the gluon propagator is

µ, a ⌫, bp =
�

p2 + ✏

h
⌘µ⌫ � (1� ⇠)

pµp⌫

p2

i
�ab . (3.2)

We give the full set of Feynman rules in Appendix A.
The four-gluon tree-level amplitude is given by summing all possible Feynman dia-

grams. as shown in Figure 5.
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Step 1: compute discontinuity

Step 2: apply dispersion relation
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Cutkosky cutting rule:

Let us compute this integral via S-matrix bootstrap:

Figure 4: The contour integral for the I2.

In the second step, one can compute the full integral using dispersion relation. We consider
s = P 2 < 0, and the contour can be chosen as shown in Figure 4. One has

I2(s) =
1

2⇡

Z 1

0

dt

t� s
Disc[I2(t)] =

(4⇡)
D
2

(�s)�✏
�(✏)�2(1� ✏)

�(2� 2✏)
(2.23)

where one can use the formula
Z 1

0

dt
tx/2 � 2

t� s
= (�s)

x
2�2 �

�x
2
� 1

�
�
�
2�

x

2

�
. (2.24)

One can easily compute this bubble integral using for example Feynman parametrization
and find the same expression. Such dispersion method has played a role in computing
Feynman integrals in early days, and interested reader can find more examples for two-
loop integrals in [9].

3 Pure Yang-Mills theory

In this lecture we will mainly use amplitudes in the pure YM theory as examples for
introducing the on-shell method. This section will give a brief review of the theory which
will also help to set up some notations.

The action of Yang-Mills theory is

L = �
1

4
F a

µ⌫
F a,µ⌫

�
1

2⇠
(@µAa

µ
)2 + c̄a(�@µDab

µ
)cb , (3.1)

which contains the gluon fields Aa

µ
and the ghost fields ca, c̄a. One can derive the Feynman

rules from the action. For example, the gluon propagator is

µ, a ⌫, bp =
�

p2 + ✏

h
⌘µ⌫ � (1� ⇠)

pµp⌫

p2

i
�ab . (3.2)

We give the full set of Feynman rules in Appendix A.
The four-gluon tree-level amplitude is given by summing all possible Feynman dia-

grams. as shown in Figure 5.

9



Modern amplitudes methods

New ingredients in the modern on-shell methods:

S-matrix program is replaced by the Standard Model since 
late1960s.

• Working at perturbative level 
• Generalized unitarity cuts 
• Use of good variables, e.g. spinor helicity 
• New mathematical functional structures (e.g. symbol) 
• Using simple toy models (N=4 SYM) as testing ground

e.g. tree-level BCFW recursion relations, unitarity-cut methods

Bern, Dixon, Durban, Kosower 1994; Britto, Cachazo, Feng, Witten, 2004



Modern amplitudes methods

In the optical theorem, unitarity can be used to compute 
only the imaginary part. How can the modern on-shell 
methods compute the full amplitudes via unitarity cuts?

A question:



One-loop structure

Consider one-loop amplitudes:

What we really want



Unitarity cuts
Using simpler tree-level blocks, one can derive the coefficients 
more efficiently:

[Bern, Dixon, Dunbar, Kosower 1994]

[Britto, Cachazo, Feng 2004]

Cutkosky cutting rule:

Figure 8: One-loop amplitudes expanded in scalar basis.

Figure 9: Quadruple-cut of the one-loop four-gluon amplitude.

is able to determine the complete integrands, and after performing integration, they will
give the full amplitudes.

Moreover, often we want to compute the coe�cients of basis integrals. These coef-
ficients are also rational functions. To determine a given coe�cient, it will be enough
to consider some cut channels rather than the full amplitudes. Once the coe�cients are
obtained, one can multiply them with the basis integrals, and in this way, one recovers
the full amplitudes.

Below we will use explicit examples to manifest these ideas. We mostly focus on the
one-loop examples in pure YM theory. For the higher-loop cases, we will focus on the
N = 4 SYM theory.

5.1 One-loop amplitudes

The massless one-loop amplitudes can be always expanded in the term of a set of scalar
integral basis as shown in Figure 8.

The basis integrals are independent of the specific theory and are also obtained once-
for-all. The truly theory-dependent information is contained in the coe�cients, which are
the main goal of the computation.

5.1.1 Quadruple cuts

Let us first consider the simple quadruple cut for a four-gluon amplitude.

0 = l21 = (l1 � p1)
2 = (l1 � p1 � p2)

2 = (l1 + p4)
2 . (5.2)

The four cut constraints are enough to fix the four-dimensional loop momentum. There
are two solutions

l[1]1 =
[12]

[42]
�1�̃4 , l[2]1 =

h12i

h42i
�4�̃1 , (5.3)

18

generalized multiple cuts



Loop integrands
Both the basis coefficients and integrand are rational functions, 
once they are obtained, one has the information for the full 
amplitudes. 

Comments on the integral reduction and evaluation:

work by Bo Feng, Song He, Zhao Li, Li-Lin Yang, Yang Zhang, etc.. (an incomplete list)

Notable new efficient numerical method by Xiao Liu and Yan-Qing Ma: AMFlow package

See the talk by Hua-Xing Zhu



Outline

Modern amplitude methods

Effective field theory and form factors

Some recent progress



Contribution from higher dimensional operators are 
suppressed by powers of 

Effective field theory

( E
M )

n

Effective field theories, mostly for QCD:  
HQET, SCET,    PT, NRQCD (NRQED, NRGR)

Fermi theory of weak interactions is such an example.

χ

ℒSMEFT = ℒSM + ∑
n≥1

∑
i

C(n)
i

Mn
𝒪(n)

i

Standard Model effective field theory:



Higgs EFTHiggs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

Effective gluon-Higgs vertex:

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 �

m2
h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�
4

s

✓
1 �

m2
h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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Dimension-5 operator
O0 = Htr(FμνFμν)
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1 Introduction

O1 = Htr(F ⌫
µ F ⇢

⌫ F µ
⇢ ) , (1.1)

O2 = Htr(D⇢Fµ⌫D
⇢Fµ⌫) , (1.2)

O3 = Htr(D⇢F⇢µD�F
�µ) , (1.3)

O4 = Htr(Fµ⇢D
⇢D�F

�µ) . (1.4)
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p
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Effective field theory

A effective field theory:

ℒEFT = ℒ0 + ∑
n≥1

∑
i

C(n)
i

Mn
𝒪(n)

i

𝒪(n)
i (μ)

C(n)
i (μ)

Local operators

Wilson coefficients

Two central ingredients:



• Classification of operators 
• Constraining Wilson coefficients 
• Renormalization and RG 
• Amplitudes in EFT

Effective field theory
Problems in EFT studies:

ℒEFT = ℒ0 + ∑
n≥1

∑
i

C(n)
i

Mn
𝒪(n)

i
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On-shell form factors
Hybrids of on-shell states and off-shell operators:

form factors
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩

(work in momentum space)



Minimal tree form factors

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.

– 11 –

One can translate any local operator into “on-shell” kinematics !

𝒪3 = ϕ∂μϕ∂μϕ ℱ𝒪3,3(1,2,3) = δD(q −
3

∑
i=1

pi)(s12 + s23 + s13)

𝒪2 = tr(FμνFμν) ℱ𝒪2,2(1,2) = δD(q −
2

∑
i=1

pi)[(ϵ1 ⋅ ϵ2)(p1 ⋅ p2) − (ϵ1 ⋅ p2)(ϵ2 ⋅ p1)]

Examples:

ℱ𝒪2,2(1
−,2−) = δD(q −

2

∑
i=1

pi) ⟨12⟩2or



Minimal tree form factors

Dictionary for YM operators:

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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One can translate any local operator into “on-shell” kinematics !

3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

However, the interpretation changes significantly.

tr(F̄αβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.13)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.14)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.15)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.16)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.17)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.18)
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Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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D-dim
Important for capturing 
“Evanescent operators”

Jin, Ren, GY, Yu, 2202.08285



On-shell methods 

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3

On-shell methods can be applied to operators and study EFT, 
for both the operator construction and high-loop renormalization.
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YM Spectrum and Higgs Amplitudes

• 1804.04653 [Phys.Rev.Lett. 121 (2018) 10], 1904.07260, 1910.09384, with Qingjun Jin (靳庆军) 
• 2011.02494 with Qingjun Jin, Ke Ren (任可);  
• 2202.08285, 2208.xxxxx, with Qingjun Jin, Ke Ren; Rui Yu (余睿)



Equation of motion: Bianchi identities:

Classically, operators are generally not independent:

DμFμν = 0 DμFνρ + DνFρμ + DρFμν = 0

At quantum level, different operators can mixing with each 
other via renormalization: 

𝒪R,i = Z j
i 𝒪B, j 𝒟 = −

d log Z
d log μ

𝒟 ⋅ 𝒪eigen = γ ⋅ 𝒪eigen

High-dimensional YM operators

We consider Lorentz scalar gauge invariant local operators:

1. INTRODUCTION CONTENTS

1 Introduction

Gauge invariant operators play important roles in QFT. For example, they correspond to com-
posite states such as color-singlet hadrons in QCD and also appear as effective interaction
vertices in effective field theories (EFT). At classical level, an important problem is to find
a set of independent basis for the operators of a certain canonical dimension. At quantum
level, the operators receive quantum loop corrections and it is important to perform renor-
malization, where the canonical dimensions are modified by anomalous dimensions. Further
problems include computing scattering amplitudes in EFTs where the operators need to be
taken into account as well.

In this report, we will address all these problems by considering gauge invariant local
operators which are composed of field strength Fµ⌫ and covariant derivatives Dµ. The field
strength carries a color index as Fµ⌫ = F a

µ⌫T a, where T a are the adjoint generators of gauge
group and satisfy

[T a, T b] = i f abc T c . (1)

The covariant derivative acts in the standard way as

Dµ ?= @µ ?+i g[Aµ,?] , [Dµ, D⌫] ?= i g[Fµ⌫,?] . (2)

A gauge invariant scalar operator can be written in the following general form:

O(x)⇠ c(a1, ..., an)X (⌘µ⌫)
�
Dµ11

...Dµ1m1
F⌫1⇢1

�a1 · · ·
�
Dµn1

...Dµnmn
F⌫n⇢n

�an(x) , (3)

where c(a1, ..., an) are color factors (e.g. given in terms of Tr(..T ai ..T aj ..)). All Lorentz indices
{µi ,⌫i ,⇢i} are contracted in pairs by metric ⌘µ⌫ contained in the function X (⌘). These oper-
ators form composite color-singlet states in QCD, and they are also related to the Higgs EFT,
which is obtained in the gluon fusion process by integrating the heavy top quark [1–4].

To study the aforementioned problems associated to these operators, a useful observable
to consider is the form factor defined as (see e.g. [5] for an introduction):

FO,n(1, . . . , n; q)⌘
Z

dD xe�iq·xh1 . . . n|O(x)|0i , (4)

where pi are momenta for on-shell states and q =
P

i pi is an off-shell momentum associated
to the operator. The form factors allow to apply modern on-shell amplitude techniques to
study “off-shell" operators, for both constructing (classical) operator bases and for computing
high-loop quantum corrections. In the remaining sections, we would like to report some recent
progress on these problems, mainly based on [6,7].

2 Operator basis

The operators at a given canonical dimension in general are not independent with each other,
because they can be related to each other through equations of motion (EoM) or Bianchi
identities (BI):

EoM : DµFµ⌫ = 0 , BI : DµF⌫⇢ + D⌫F⇢µ + D⇢Fµ⌫ = 0 . (5)

Our goal in this section is to find a set of independent operators in the sense that there are no
above relations among the operators.

For simplicity, we will focus on length-2 and length-3 operators, in which there are only 2
and 3 Fµ⌫ fields respectively, plus arbitrary insertion of covariant derivatives. Two operators

2



Form factors and on-shell methods
Previous results were known mostly at one-loop up to dimension-8.

Gracey 2002; Dawson, Lewis, Zeng 2014; …

Form factors can help tackle these problems to high dimensions 
and to high loop orders.

(a) (b) (c) (d)
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Figure 3. Complete set of cuts fully probing contributions from all the master integrals
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(9) cyclic.
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Figure 4. Master integrals probed by s12-triple cut

(�1)3, while operator from fabc/dabc sector has C-parity CO = +/�, so the total C-parity of

the form factor is �/+ 2. As a result, coe�cients of integrals (5) and (6) as well as (7) and

(8) are related with each other as:

c6I6 =

(
�c5I5

��
1$2

, f -sector

c5I5
��
1$2

, d-sector
, c8I8 =

(
�c7I7

��
1$3

, f -sector

c7I7
��
1$3

, d-sector
. (3.2)

Notice also that I3 and its two cyclic partners share a degenerate expression, but here we

treat them as distinct ones and sum cyclic permutations together.

A spanning set of planar cuts fully probing these master integrals are shown in Fig. 3.

As already mentioned, a particular cut can probe only a subset of master integrals. Among

master integral coe�cients, c1, c2, c3, c4 are probed respectively by cuts (c), (b), (a), (d)

in Fig. 3. To probe c5 one should apply s123-triple-cut (a), which also probes the coe�cient

of integral I6|(p3!p1!p2!p3). To probe c7 and c9 one can apply s12-triple-cut (b), or s312-

triple-cut. Notice the coe�cients of I8|(1!3!2!1) and I9|(1!2!3!1) can also be probed by

cut (b). Since di↵erent cut channels can probe same or symmetry-related master integrals,

this provides strong consistency checks for the results.

Below we provide some more details of the calculation by considering a particular cut

channel. Taking cut (b) in Fig. 3 as an example, this cut allows us to determine the coe�cients

of master integrals as shown in Fig. 4.

The cut integrand is obtained by sewing a planar four-gluon tree form factor together

with a planar five-gluon tree amplitude. Since we consider D-dimensional cuts, the tree results

are computed via Feynman rules. The sewing process involves the helicity sum of cut states:
Z

dPS
X

helicities of ✏l1,l2,l3

F (0)(p3,�l1,�l2,�l3)A
(0)(p1, p2, l3, l2, l1) , (3.3)

2Considering f
abc

F
a
F

b
F

c, under C-parity it becomes fabc
F

c
F

b
F

a(�1)3 which remains the same.
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(1) (2)

Figure 1. (1) The 2-loop non-planar topology has vanishing color factor. (2) Nonplanar topology
contributing to leading color begins to appear at 3-loop.
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Figure 2. Master integrals (plus their cyclic permutations) that contribute to planar two-loop minimal
form factors of length-3 operators.

loops nonplanar topology (even at leading Nc color) will contribute, as shown in Fig. 1(b),

and therefore nonplanar cut is necessary. Since the one-loop case is quite simple, below we

will focus on the two-loop computation.

The complete set of two-loop master integrals for minimal length-3 form factors are given

in Fig. 2. With color decomposition, the two-loop color-ordered form factors, associated with

color factor tr(T a1T a2T a3), can be written as a sum of master integrals Ii as

F (2)
O

=
⇣
c1I1 + c2I2 + c3I3 + c4I4 +

⇥
c5I5 + c6I6

⇤
+

⇥
c7I7 + c8I8

⇤
+ c9I9

⌘
+ cyc.perm.(1, 2, 3) ,

(3.1)

where master integrals {Ii} strictly correspond to the topology and labeling given in Fig. 2.

The master coe�cients ci are what we want to obtain using unitarity-IBP method. Before

considering that, let us discuss one important feature of the master integrals.

One can see that (5), (6) and (7), (8) in Fig. 2 are pairs of ‘mirror’ topologies. In

color-ordered form factors, they should be considered to be independent because they are

inequivalent planar diagrams and therefore probed by di↵erent planar cuts. On the other

hand, they are closely related to each other: graphically, (5) and (6) are related by label

flipping 1 $ 2, while (7) and (8) are related by flipping 3 $ 1. From the planar color point

of view, they are related by reversing color orientation, which is equivalent to a “C-parity

transformation” (see e.g. [56]), so the kinematic parts of a fixed color order tr(123) and the

reversed color order tr(321) only di↵er by an overall C-parity factor decided by external

particles and inserted operator. The external particles are three gluons which have C-parity

– 19 –



Two-loop renormalization for higher length operators. 
(Evanescent operators are important for computing 2-loop AD.)

Mixing matrices and spectrum

Two-loop anomalous dimensions for length-3 operators up to dimension 16:
Table 8. Summary of anomalous dimensions for length-2 and length-3 operators. The lower dimension
operators will appear as descendants in the high dimension operators.

dim 4 6 8 10 12 14 16

�
(1)
f,↵ �

22
3 /

7
3

71
15

241
30 ,

101
15

61
6 ,

172
21

331
35 ,

1212±
p

3865
105

�
(2)
f,↵ �

136
3 /

269
18

2848
125

49901119
1404000 ,

8585281
234000

4392073141
87847200 ,

685262197
15373260

231568398949
4253886000 ,

355106171452034±95588158951
p
3865

6576507756000

�
(1)
f,� �

22
3 1 /

17
3 9 43

5
67
6

�
(2)
f,� �

136
3

25
3 /

2195
72

79313
1800

443801
9000

63879443
1058400

�
(1)
d,↵ / / /

13
3

41
6

551±3
p

609
60

321±
p

1561
30

�
(2)
d,↵ / / /

575
36

46517
1440

5809305897±19635401
p
609

131544000
229162584707±225658792

p
1561

4130406000

�
(1)
d,� / / / / 9 /

67
6

�
(2)
d,� / / / /

150391
3600 /

174229
3150

Checks and analysis

Some consistency checks for our calculation have been mentioned above, and here we make a

summary:

1. The O(✏�2) poles of one-loop bare form factors and the O(✏�3),O(✏�4) poles of two-loop

bare form factors have infrared origin and therefore should be totally canceled after IR

subtraction procedure shown in (4.9), (4.10).

2. The O(✏�2) poles of two-loop UV divergences are totally determined by one-loop UV

divergences and �0, as shown in (4.24).

3. At a given dimension, mixing from descendent operators to non-descendent operators

never takes place, such as length-2 to higher length operators in (4.15).

4. As explained in the dimension eight case, mixing from general length-3 operators to

the unique length-2 operator can be probed by form factors with both (�,�,+) and

(�,�,�). So form factors under these two helicity settings should give the same length-

changing matrix elements Z(2)
3!2.

Our results satisfy all these requirements. Some further consistency checks will be also men-

tioned for the computation of finite remainder function in next section.

Let us make a few comments on the anomalous dimensions and dilatation matrix.

• In Table 8, the irrational number appears in the dimension 14 and 16 cases. As eigen-

values of dilatation operators, anomalous dimensions can be obtained straightforwardly

by solving characteristic equation. Alternatively, one can get their series expansions

in �̂ up to arbitrary finite order through perturbation method introduced in quantum

mechanics, which is equivalent to treat dilatation operator as a Hamiltonian of a finite

system, see e.g. [69]. From perturbative calculation, one can find that whether irrational

numbers appear in perturbative expansions is determined by characteristic equation of

– 36 –

Jin, Ren, GY  2020

Jin, Ren, GY, Yu  to appear



Master-bootstrap method

• 2106.01374 [Phys.Rev.Lett. 127 (2021) 15, with Yuanhong Guo (郭圆宏), Lei Wang (王磊磊) 
• 2205.12969, with Yuanhong Guo, Qingjun Jin, Lei Wang



Master bootstrap method

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Spurious-pole cancellation

Guo, Wang, GY  PRL 2021

HWe apply this strategy to the frontier two-loop five-point 
scattering (Higgs plus four partons):



Master bootstrap method

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Spurious-pole cancellation

The strategy does not rely on special symmetries of the theory, thus 
can be applied to general theories.



Maximal Transcendentality Principle

Guo, Jin, Wang, GY  2205.12969

N=4 SYM QCD

N=4 result is equal to the maximally transcendental part in QCD

Maximal transcendentality principle 

We are able to prove the previously observed maximally transcendental 
correspondence for Higgs amplitudes (form factors) and also find new 
non-trivial example.

Conjecture for certain quantities

H

Kotikov, Lipatov, Onishchenko, Velizhanin 2004



Color-kinematics duality and 
double-copy of form factors

• 2106.01374 [Phys. Rev. Lett. 127 (2021) 17], 2111.03021, 2112.09123,  with Guanda Lin (林林冠
达), Siyuan Zhang (张思源) 

• 2111.12719, 220x.xxxxx, with Guanda Lin



CK-duality

Unitarity cuts

Ansatz of the 
loop integrand

Solving linear equations

Strategy of loop computation

Conjecture



CK-duality

Unitarity cuts

Ansatz of the 
loop integrand

Solving linear equations

Strategy of loop computation

Main challenge:  it is a prior not known whether the solution exists

Conjecture



Results up to four loops 5

TABLE I. Number of cubic graphs, planar masters and free
parameters in CK-solution of three-point form factors up to
four loops. Note that the number of parameters are counted
based on the solutions obtained from minimal ansatzes.

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters 1 4 24 133

contributions and include all—usually one has to find all
possible ways of planar projections and distribute the in-
tegrand equally among them.

We have performed explicitly checks for three-point
form factors up to four loops. The checks also use CK-
dual integrands with free parameters as input. to modify

DISCUSSION

In this paper we obtain for the first time the full-color
four-loop integrand of the three-point form factor in
N = 4 SYM. The color-kinematics duality has played
a crucial role in this construction by providing a very
compact integrand ansatz. The main challenge of the
computation is actually if a solution consistent with all
unitarity cut constraints exists. Remarkably, there is a
large solution space for the final four-loop CK-dual inte-
grand. In Table I, we summarize the some descriptions
of the CK-dual constructions up to four loops, including
also previous lower loop results in [38, 40]. One can see
that as the number of loops increase, the number of mas-
ters and the size of their ansatzes increase mildly. Impor-
tantly, the dimension of the CK-dual solution space also
grows when going to higher loop orders, which strongly
suggests that the construction can be applied to form
factors at five and even higher loops.

As another interesting aspect of this work, we show
that for the three-point form factor up to four loops, the
leading-Nc integrands in the limit of q2 ! 0 all satisfy
the directional dual conformal symmetry with a boost
vector bµ / qµ. This property should hold for more
general higher-point and higher-loop form factors, which
are supported by a unitarity based argument. It is thus
reasonable to closely inspect the directional dual con-
formal symmetry for the dual periodic Wilson lines at
both weak- and strong-coupling. On the other hand, for
the integrated planar form factors, the DDCI symmetry
should be broken and the cusp anomalies appear due to
IR divergences [30]. We expect that the cusp anoma-
lies can also be subtracted by the BDS ansatz, similar to
the amplitudes case, and can be well interpreted by the
anomalous conformal Ward identities [51] for the dual
Wilson lines. Furthermore, it is natural to ask whether
the directional dual conformal symmetry can be extended

to general conformal symmetry beyond the directional
bµ / qµ as well as the lightlike limit of q. Some dis-
cussions about the (general) dual conformal symmetry
for form factors as well as its Wilson line dual at one-
loop level are already given in [10, 36] but higher-loop
generalizations are still not completely clear. We also
mention that recently a non-perturbative result has been
obtained in [52, 53] (see also the related study for am-
plitudes [54]) originating from the integrability of N = 4
SYM [55] in the operator product expansion (OPE) limit
of the Wilson line and it would be interesting to have
a deeper comprehension about the form factor/periodic
Wilson line duality. We will give more details about the
above DDCI, as well as the cut-based proof, and further
generalizations elsewhere [? ].

Finally, to implement the four-loop integrals defi-
nitely deserves considerations. As discussed in the pre-
vious three-loop discussions [40], our form factors re-
sults should encode full-color IR divergences and splitting
functions. This is, however, not a trivial task even in the
large Nc limit, since the color-singlet q-leg results in in-
evitable contributions from non-planar topologies (the q-
interior topologies). Besides these di�culties, we are still
optimistic about solving the problem of loop integrations
in the future.
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Form factor double-copy

• An surprising new mechanism for form factors:

• Hidden factorization relations of gauge form factors
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Double Copy of Form Factors and Higgs Amplitudes:

An Example of Turning Spurious Poles in YM into Physical Poles in Gravity
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We extend the double copy picture of scattering amplitudes to a class of matrix elements (so-called
form factors) that involve local gauge invariant operators. Both the Bern, Carrasco and Johansson
(BCJ) and the Kawai, Lewellen and Tye (KLT) formalisms are considered and novel properties are
observed. One remarkable feature is that through the double-copy construction, certain spurious
poles hidden in the gauge form factors become physical propagators in gravity. This mechanism
also reveals new hidden relations for form factors which can be understood as a generalization of
the BCJ relations. The same double-copy prescription applies as well to tree-level QCD amplitudes
involving a color-singlet Higgs particle. The double copy of form factors suggests a possible new
class of observables in gravity and string theory.

INTRODUCTION

Despite the very di↵erent nature, gauge and gravity the-
ories are known to be intimately related. The celebrated
AdS/CFT correspondence [1–3] shows that a gravity the-
ory in the AdS space can be equivalent to a gauge theory
living on the AdS boundary. Moreover, the perturba-
tive amplitudes in gauge and gravity theories are also
closely linked via the double copy as “gravity = (gauge
theory)2”, realized in various formalisms including the
Kawai, Lewellen and Tye (KLT) relations [4], the Bern,
Carrasco and Johansson (BCJ) double copy stemming
from the color-kinematics (CK) duality [5, 6], and the
Cachazo, He and Yuan (CHY) formula [7, 8]. An excel-
lent review about the double copy can be found in [9].

Apart from scattering amplitudes, which involve on-
shell asymptotic states only, gauge invariant local op-
erators also play important roles in gauge theories and
it is natural to ask: does a consistent double copy pic-
ture exist for physical quantities involving local opera-
tors? Nevertheless, the answer is not obvious at all, since
for example, local operators in gravity would break the
di↵eomorphism invariance.

In this paper, we make a concrete step towards ad-
dressing this question, by realizing both BCJ and KLT
double copy for the form factors [10–12]. Form factors
are defined as matrix elements between a gauge invari-
ant operator O and n on-shell states (see [13] for a recent
introduction and review),

FO,n =

Z
d
D
xe

�iq·x
h1 2 . . . n|O(x)|0i , (1)

where q =
P

n

i=1 pi is the o↵-shell momentum associated
with the operator. We find that in realizing the dou-
ble copy, the inclusion of gauge invariant local operators
indeed leads to intriguing new features.

One novel feature is that special spurious poles ap-
pear in the construction of CK-dual numerators in gauge-
theory form factors, and after double copy they become
new physical propagators in the gravity quantities, i.e.

spurious poles
double-copy
��������! physical propagators.

Besides, the factorization on the new propagators in grav-
ity implies that the gauge-theory form factors satisfy hid-
den relations when evaluated on the spurious poles, which
can be schematically shown as

~v · ~Fn

��
spurious pole

= Fm ⇥An+2�m, (2)

and may be understood as a generalization of BCJ rela-
tions [5] for form factors.
Below we explain these properties in detail with ex-

amples of tree-level form factors with O = tr(�2) in the
scalar-Yang-Mills theory. Similar discussions also apply
to form factors of other operators, such as  ̄ in QCD, of
which the form factors are equivalent to a class of Higgs
plus quarks and gluons amplitudes. This provides for the
first time a double copy for amplitudes involving a color
singlet particle. We will discuss more on this in the last
section.

INVITATION: A THREE-POINT EXAMPLE

Most new features of the form-factor double copy can be
illustrated by considering a simple example: the three-
point tree-level form factor F tr(�2),3(1

�
, 2�, 3g). In this

example, there are two cubic Feynman diagrams �a,b as
given in Figure 1, and the full-color form factor can be
written as

F 3(1
�
, 2�, 3g) =

CaNa("3, {pi})

s13
+

CbNb("3, {pi})

s23
, (3)
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Summary

• We review the S-matrix bootstrap and modern on-shell methods

• EFT and operators can be studied using on-shell techniques.

On-shell 
Amplitudes

Off-shell 
Operators

Form Factors

• We briefly mention some recent progress on form factors and 
their applications.



Outlook

• Consider more generic operators in general EFT, such as operators 
with fermion or massive fields, non-local operators, etc. A goal is to 
provide a two-loop framework for general EFT renormalization and 
EFT amplitudes.

• Explore hidden structure of renormalization and EFT amplitudes.

Expectation:

All quantities that can be calculated using Feynman diagrams
can be computed more efficiently with on-shell methods

• Bootstrap beyond perturbation
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All quantities that can be calculated using Feynman diagrams
can be computed more efficiently with on-shell methods

• Consider more generic operators in general EFT, such as operators 
with fermion or massive fields, non-local operators, etc. A goal is to 
provide a two-loop framework for general EFT renormalization and 
EFT amplitudes.

• Explore hidden structure of renormalization and EFT amplitudes.

• Bootstrap beyond perturbation



Extra slides



A bird’s eye view

“Modern” on-shell method

Building blocks Tree amplitudes Loop amplitudes

3-pt amp

Minimal FF

Higher points

BCFW CSW

One-loop
Higher loops

Integrand level

Unitarity-IBP



MHV tree form factors

MHV structure of form factors: Brandhuber, Spence, Travaglini, GY 2010

Compare with Parke-Taylor formula for amplitudes:

AMHV

n (1+, .., i�, .., j�, .., n+) = �4(
nX

i=1

pi)
hiji4

h12i · · · hn1i

FMHV

n (1+, .., i�, .., j�, .., n
+; tr(�2)) = �4(

nX

i=1

pi � q)
hiji2

h12i · · · hn1i
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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We consider Lorentz scalar gauge invariant local operators:
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They are color-singlet gluon states and also appear as 
Higgs-gluon effective interaction vertices in Higgs EFT:

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 �

m2
h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�
4

s

✓
1 �

m2
h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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1. INTRODUCTION CONTENTS

1 Introduction

Gauge invariant operators play important roles in QFT. For example, they correspond to com-
posite states such as color-singlet hadrons in QCD and also appear as effective interaction
vertices in effective field theories (EFT). At classical level, an important problem is to find
a set of independent basis for the operators of a certain canonical dimension. At quantum
level, the operators receive quantum loop corrections and it is important to perform renor-
malization, where the canonical dimensions are modified by anomalous dimensions. Further
problems include computing scattering amplitudes in EFTs where the operators need to be
taken into account as well.

In this report, we will address all these problems by considering gauge invariant local
operators which are composed of field strength Fµ⌫ and covariant derivatives Dµ. The field
strength carries a color index as Fµ⌫ = F a

µ⌫T a, where T a are the adjoint generators of gauge
group and satisfy

[T a, T b] = i f abc T c . (1)

The covariant derivative acts in the standard way as

Dµ ?= @µ ?+i g[Aµ,?] , [Dµ, D⌫] ?= i g[Fµ⌫,?] . (2)

A gauge invariant scalar operator can be written in the following general form:

O(x)⇠ c(a1, ..., an)X (⌘µ⌫)
�
Dµ11

...Dµ1m1
F⌫1⇢1

�a1 · · ·
�
Dµn1

...Dµnmn
F⌫n⇢n

�an(x) , (3)

where c(a1, ..., an) are color factors (e.g. given in terms of Tr(..T ai ..T aj ..)). All Lorentz indices
{µi ,⌫i ,⇢i} are contracted in pairs by metric ⌘µ⌫ contained in the function X (⌘). These oper-
ators form composite color-singlet states in QCD, and they are also related to the Higgs EFT,
which is obtained in the gluon fusion process by integrating the heavy top quark [1–4].

To study the aforementioned problems associated to these operators, a useful observable
to consider is the form factor defined as (see e.g. [5] for an introduction):

FO,n(1, . . . , n; q)⌘
Z

dD xe�iq·xh1 . . . n|O(x)|0i , (4)

where pi are momenta for on-shell states and q =
P

i pi is an off-shell momentum associated
to the operator. The form factors allow to apply modern on-shell amplitude techniques to
study “off-shell" operators, for both constructing (classical) operator bases and for computing
high-loop quantum corrections. In the remaining sections, we would like to report some recent
progress on these problems, mainly based on [6,7].

2 Operator basis

The operators at a given canonical dimension in general are not independent with each other,
because they can be related to each other through equations of motion (EoM) or Bianchi
identities (BI):

EoM : DµFµ⌫ = 0 , BI : DµF⌫⇢ + D⌫F⇢µ + D⇢Fµ⌫ = 0 . (5)

Our goal in this section is to find a set of independent operators in the sense that there are no
above relations among the operators.

For simplicity, we will focus on length-2 and length-3 operators, in which there are only 2
and 3 Fµ⌫ fields respectively, plus arbitrary insertion of covariant derivatives. Two operators

2

High-dimensional YM operators



Evanescent YM operators

In this paper, we consider a new class of evanescent operators in the pure Yang-Mills

theory, which are composed of field strength Fµν and covariant derivatives Dµ. A simple

example of such operators can be given as

Oe =
1

16
δµ1µ2µ3µ4µ5
ν1 ν2 ν3 ν4 ν5tr(Dν5Fµ1µ2Fµ3µ4Dµ5Fν1ν2Fν3ν4) , (1.2)

where δµ1..µn
ν1...νn = det(δµν ) is the generalized Kronecker symbol (see Section 2 for detail). This

operator is zero in four dimensions but has non-trivial matrix elements such as form factors

in general d dimensions. For example, its (color-ordered) minimal tree-level form factor can

be given as

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (1.3)

which is a non-trivial function of Lorentz product of momenta and polarization vectors in d

dimensions. The main goal of this paper is to study the classification of such operators and

their one-loop renormalization.

Unlike the four fermion operators in (1.1), due to the insertion of covariant derivatives

and different ways of Lorentz contractions, the gluonic evanescent operators like (1.2) exhibit

richer structures. Moreover, at a given mass dimension, the number of all the possible Lorentz

contraction structures is finite, which means that the gluonic evanescent operators are also

finite, calling for a systematic way to construct their independent basis. To classify these

operators, it will be convenient to apply the correspondence between local operators and

form factors [13, 14]. The main advantage is that form factors are on-shell matrix elements,

thus the constraints from the equation of motion and Bianchi identities can be taken into

account automatically, see e.g. [15]. Here, due to the special nature of evanescent operators,

the usual spinor helicity formalism will be insufficient. Instead, one needs to consider form

factors consisting of d-dimensional Lorentz vectors (i.e. external momenta and polarization

vectors) such as in (1.3). Since the Yang-Mills operators contain non-trivial color factors, the

form factor expressions provide also a useful framework to organize the color structures. One

can first classify function basis at the form factor level and then map back to basis operators.

We will apply a strategy to construct the basis evanescent operators along this line.

To study the quantum effect of evanescent operators, we perform one-loop computation of

their form factors. The calculation is based on the unitarity method [16, 17] in d dimensions.

Using the form factor results, we can study their renormalization and operator-mixing behav-

iors. We provide explicit results of the one-loop renormalization matrices and the anomalous

dimensions for the dimension-ten basis operators. These one-loop results will be necessary

ingredients for the two-loop renormalization of physical operators.

This paper is organized as follows. In Section 2, we first give the definition of evanescent

operators and then describe the systematic construction of the operator basis. In Section 3 we

first explain the one-loop computation of full-color form factors using the unitarity method,

then we discuss the renormalization and obtain the anomalous dimensions of the complete set

of evanescent operators with dimension 10. A summary and discussion are given in Section 4

followed by a series of appendices. Several technique details in the operator construction are
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2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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High-dimensional YM operators
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Figure 3. Complete set of cuts fully probing contributions from all the master integrals
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Figure 4. Master integrals probed by s12-triple cut

(�1)3, while operator from fabc/dabc sector has C-parity CO = +/�, so the total C-parity of

the form factor is �/+ 2. As a result, coe�cients of integrals (5) and (6) as well as (7) and

(8) are related with each other as:

c6I6 =

(
�c5I5

��
1$2

, f -sector

c5I5
��
1$2

, d-sector
, c8I8 =

(
�c7I7

��
1$3

, f -sector

c7I7
��
1$3

, d-sector
. (3.2)

Notice also that I3 and its two cyclic partners share a degenerate expression, but here we

treat them as distinct ones and sum cyclic permutations together.

A spanning set of planar cuts fully probing these master integrals are shown in Fig. 3.

As already mentioned, a particular cut can probe only a subset of master integrals. Among

master integral coe�cients, c1, c2, c3, c4 are probed respectively by cuts (c), (b), (a), (d)

in Fig. 3. To probe c5 one should apply s123-triple-cut (a), which also probes the coe�cient

of integral I6|(p3!p1!p2!p3). To probe c7 and c9 one can apply s12-triple-cut (b), or s312-

triple-cut. Notice the coe�cients of I8|(1!3!2!1) and I9|(1!2!3!1) can also be probed by

cut (b). Since di↵erent cut channels can probe same or symmetry-related master integrals,

this provides strong consistency checks for the results.

Below we provide some more details of the calculation by considering a particular cut

channel. Taking cut (b) in Fig. 3 as an example, this cut allows us to determine the coe�cients

of master integrals as shown in Fig. 4.

The cut integrand is obtained by sewing a planar four-gluon tree form factor together

with a planar five-gluon tree amplitude. Since we consider D-dimensional cuts, the tree results

are computed via Feynman rules. The sewing process involves the helicity sum of cut states:
Z

dPS
X

helicities of ✏l1,l2,l3

F (0)(p3,�l1,�l2,�l3)A
(0)(p1, p2, l3, l2, l1) , (3.3)

2Considering f
abc

F
a
F

b
F

c, under C-parity it becomes fabc
F

c
F

b
F

a(�1)3 which remains the same.
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(1) (2)

Figure 1. (1) The 2-loop non-planar topology has vanishing color factor. (2) Nonplanar topology
contributing to leading color begins to appear at 3-loop.
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Figure 2. Master integrals (plus their cyclic permutations) that contribute to planar two-loop minimal
form factors of length-3 operators.

loops nonplanar topology (even at leading Nc color) will contribute, as shown in Fig. 1(b),

and therefore nonplanar cut is necessary. Since the one-loop case is quite simple, below we

will focus on the two-loop computation.

The complete set of two-loop master integrals for minimal length-3 form factors are given

in Fig. 2. With color decomposition, the two-loop color-ordered form factors, associated with

color factor tr(T a1T a2T a3), can be written as a sum of master integrals Ii as

F (2)
O

=
⇣
c1I1 + c2I2 + c3I3 + c4I4 +

⇥
c5I5 + c6I6

⇤
+

⇥
c7I7 + c8I8

⇤
+ c9I9

⌘
+ cyc.perm.(1, 2, 3) ,

(3.1)

where master integrals {Ii} strictly correspond to the topology and labeling given in Fig. 2.

The master coe�cients ci are what we want to obtain using unitarity-IBP method. Before

considering that, let us discuss one important feature of the master integrals.

One can see that (5), (6) and (7), (8) in Fig. 2 are pairs of ‘mirror’ topologies. In

color-ordered form factors, they should be considered to be independent because they are

inequivalent planar diagrams and therefore probed by di↵erent planar cuts. On the other

hand, they are closely related to each other: graphically, (5) and (6) are related by label

flipping 1 $ 2, while (7) and (8) are related by flipping 3 $ 1. From the planar color point

of view, they are related by reversing color orientation, which is equivalent to a “C-parity

transformation” (see e.g. [56]), so the kinematic parts of a fixed color order tr(123) and the

reversed color order tr(321) only di↵er by an overall C-parity factor decided by external

particles and inserted operator. The external particles are three gluons which have C-parity
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3. LOOP COMPUTATION VIA UNITARITY-IBP CONTENTS

We summarize the operators in different sectors according the form factor structure as

Operator F
(0)(�,�,+) F

(0)(�,�,�) color factor
O↵; f / A1 0 f abc

O↵;d / A1 0 dabc

O� ; f 0 / A2 f abc

O� ;d 0 / A2 dabc

(11)

where the two helicity sectors are associated to two spinor factors:

A1 = h12i3[13][23] , A2 = h12ih13ih23i . (12)

As examples, let us consider again the dim-10 operators. Firstly, by properly (anti)symmetrizing
the set of basis (7), one can write the operators in different color sectors as

Example: Dim-10 basis (Form II)

O
0
10;1 =

1
2

f abc(D12F34)a(D15F34)b(F25)c , O
0
10;2 = f abc(D12F34)a(D5F34)b(D1F25)c ,

O
0
10;3 = dabc(D12F34)a(D5F34)b(D1F25)c , (13)

O
0
10;4 =

1
2

f abc(D12F34)a(D1F35)b(D2F45)c , O
0
10;5 =

1
2

f abc(D12F34)a(D12F35)b(F45)c .

Furthermore, by investigating the spinor factors of minimal form factors, the operators can
be put in different helicity sectors via certain linear combinations. We summarize the final
dimension-10 length-3 basis operators that will be used for loop computation as

Example: Dim-10 basis (Form III)

Basis operator F
(0)(�,�,+) F

(0)(�,�,�) color factor
O10;↵; f ;1 =

1
2@

2
OP1 � 1

12@
4
OP2

1
2 s123A1 0 f abc

O10;↵; f ;2 =O
0
10;1 �O010;5

1
2 s12A1 0 f abc

O10;↵;d;1 =O
0
10;3

1
2(s13 � s23)A1 0 dabc

O10;� ; f ;1 =
1
12@

4
OP2 0 1

4 s2
123A2 f abc

O10;� ; f ;2 =O
0
10;5 0 1

4(s
2
12 + s2

23 + s2
13)A2 f abc

(14)

3 Loop computation via unitarity-IBP

To compute the loop form factors for the basis operators, we apply the unitarity-IBP strategy
that combines unitarity cut [11–13] and integration by parts (IBP) methods [14, 15] (using
public packages e.g. [16–19]). The work flow of our strategy can be illustrated as follows:

F
(l)
���
cut
=
Y
(Tree blocks) = Cut integrand

IBP with cuts����������!
X

i

ci
�
Ii
��
cut
�

. (15)

This strategy has been used to study form factors and Higgs amplitudes in [6,7,20,21] and for
pure gluon amplitudes in [22, 23]. Similar strategy has been used in the numerical unitarity
approach [24,25], and the idea of applying cuts to simplify IBP has also been used in e.g. [26–
29].

The complete set of two-loop master integrals for minimal length-3 form factors are given
in Fig. 1. The two-loop color-ordered form factors, associated with color factor tr(T a1 T a2 T a3)
via color decomposition, can be written as a sum of master integrals Ii as

F (2)
O
=
î
c1 I1 + c2 I2 + c3 I3 + c4 I4 +

�
c5 I5 + c6 I6
�
+
�
c7 I7 + c8 I8
�
+ c9 I9

ó
+ cyc.perm. , (16)

4

On-shell unitarity-IBP method:



Mixing matrices and spectrum

Form factors contain both IR and UV divergences, by subtracting 
the universal IR, one can obtain the UV renormalization matrix. 

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:

Z(1)
O8

=
Nc

✏

0

B@
�

11
3 0 0

0 7
6 0

0 0 1
2

1

CA . (4.40)

At two-loop level, the Z(2) matrix is:

Z(2)
O8

���
1
✏ -part.

=
N2

c

✏

0

B@
�

34
3 0 0

�
1
3

269
72

5
2

�1 0 25
12

1

CA . (4.41)

Using (4.25), the dilation operator is given as

DO8 =

0

B@
�

22
3 �̂�

136
3 �̂2 0 0

�
�̂2

ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2

ĝ 0 �̂+ 25
3 �̂

2

1

CA . (4.42)

Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.29). Computing the eigenvalues of (4.42), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.43)

From now on we sort eigenvalues according to the lowest dimensions they emerge. For exam-

ple, O(�̂) anomalous dimension �
22
3 appears at dimension four, 1 appears at dimension six,

and 7
3 appears at dimension eight, so they are listed in the order of {�22

3 ; 1;
7
3}.

Dimension 10

There are five length-3 basis operators at dimension 10, as shown in Table 13. Together with

O10;0 =
1
4@

6
O4, they can be classified into three sectors:

(f123;�,�,+) : O10;0, O10;↵;f ;1, O10;↵;f ;2 ,

(f123;�,�,�) : O10;0, O10;�;f ;1, O10;�;f ;2 .

(d123;�,�,+) : O10;↵;d;1 .

(4.44)

Operators with di↵erent color factors will never mix with each other because of their opposite

C-parities, so renormalization matrices of fabc and dabc sectors can be written separately.

The computation of renormalization constant is the same as explained in the dimension-8

case and therefore not repeated here, see the discussion around (4.36) and (4.39). For the
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𝒪8;1 = ∂4Tr(F2), 𝒪8;2 = ∂2tr(F3), 𝒪8;3 = tr(D1F23D4F23F14),

Dimension-8: (up to length-3)
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Figure 1: Master integrals for the planar two-loop minimal form factors.
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Figure 2: Complete set of unitarity cuts for the planar two-loop form factors.

where master integrals Ii correspond to the topology and labeling given in Fig. 1. The master
coefficients ci are what to be computed. The spanning set of cuts used to fix all coefficients
are given in Fig. 2. Note that the two-loop minimal form factors of length-3 operators have
no sub-leading-color contribution, thus the set of planar cuts are enough to fix the full results.
More details can be found in [6].

4 Results and analysis

The master integrals in Fig. 1 are known in terms of 2d harmonic polylogarithms [30, 31].
Together with IBP coefficients, the form factors can be written in explicit functional form,
from which one can extract the wanted physical information.

The bare form factors contain divergences and can be schematically expanded as:

Loop form factor= (Universal IR div.)+ (UV div.)+ (Finite part) , (17)

where the infrared (IR) divergences depend only on the configuration of external on-shell
states, while the UV divergences are related to the operator and coupling renormalization.

Operator renormalization

In dimensional regularization, both IR and UV divergences are regularized by ✏ = (4� D)/2,
and it may seem non-trivial to disentangle the two divergences. Fortunately, this problem can
be easily solved, thanks to the universal structure of IR divergences. In particular, the two-loop
IR can be obtained by the Catani form [32], which is determined by the one-loop form factor
together with some universal functions independent of operartors.

After subtracting IR divergences, the obtained UV divergences can be eliminated by per-
forming operator renormalization. The renormalization constant Z in general takes a matrix
form as:

OR,i = Z j
i OB, j , (18)

since different operators in the same basis can generally mix with each other under renormal-
ization. From the renormalization constant, one can further define the dilation operator as

D= �d log Z
d logµ

. (19)
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Finite remainder

There are “universal building blocks” that are independent of 
the operators:

The finite remainders ->  Higgs amplitudes with high-order top 
mass corrections in Higgs EFT.

The full transcendentality degree-4 part is universal:

Table 10. Notation of form factors with three gluons, where ± indicates positive or negative helicity
gluons. f (0),±

O
are scalar factors that depend on the dimension of the operators.

external particles (1�, 2�, 3+) (1�, 2�, 3�)

form factors F
(l),+
O

F
(l),�
O

tree form factors h12i3[13][23]f (0),+
O

h12ih13ih23if (0),�
O

F
(2),�
O,fin = h12ih13ih23i ⇥R

(2),�
O

⇥

(
f (0),�
OL=2

↵-sector

f (0),�
O

�-sector
. (5.3)

Note that for the unmatched helicity cases, i.e. ↵-sector under (�,�,�) and �-sector under

(�,�,+), the tree form factors are zero, so we use the scalar factors of the length-2 operator

OL=2 to normalize the remainder function.

One can further decompose the two-loop remainder according to their trancendentality

degree as:

R
(2),±
O

=
4X

n=0

R
(2),±
O

���
deg-n

+R
(2),±
O

���
log2(�q2)

+R
(2),±
O

���
log(�q2)

. (5.4)

Here q2 = s123 = s12 + s23 + s13, and we separate the q2-dependent terms into R
(2)
O

��
log2(�q2)

and R
(2)

��
log(�q2)

, so the rest terms {R(2)
O

��
deg-n

} only depend on ratio variables:

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (5.5)

5.1 Transcendentality structure of remainder

In this subsection, we discuss the two-loop remainders according their transcendentality de-

grees. Explicit results of two-loop finite remainders are given in the ancillary file submitted

together with this paper. As an example, the result of O8;↵;f ;1 is explicitly given in Appendix

E.

Universal building blocks

For two-loop remainders under matched helicities, we find the transcendentality degree-4 part

of two-loop minimal form factors (under match helicity) always share a universal expression:

R
(2),±
O

���
deg-4

=�
3

2
Li4(u) +

3

4
Li4

⇣
�
uv

w

⌘
�

3

4
log(w)

h
Li3

⇣
�
u

v

⌘
+ Li3

⇣
�
v

u

⌘i

+
log2(u)

32

⇥
log2(u) + log2(v) + log2(w)� 4 log(v) log(w)

⇤

+
⇣2
8

⇥
5 log2(u)� 2 log(v) log(w)

⇤
�

1

4
⇣4 + perms(u, v, w) , (5.6)
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“maximal transcendentality principle”



In 2008 Bern, Carrasco and Johansson proposed an intriguing 
duality between color and kinematics factors:

Duality

Color factor Kinematic factor

⟨i j⟩ = ϵαβλαi λ
β
j , [i j] = ϵα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ϵ→ 0
∑

ℓ

ℓ− p1 − p2
1

ℓ2(ℓ−p1−p2)2

ℓ2 → 0(ℓ− p1 − p2)2 → 0
1
ℓ2
→ 2πδ(+)(ℓ2)

−→
x
←−−−−−−−−
blahblahblah

g
−−−−−→

sii+1

F (1)
n =

∑n
i=1 pi pi+1 pi+2

F (2)
n =

∑n
i=1

(

X
X

)

→
(

X
X

) (

X
Y

)

→
(

X
Y

) (

X
Y

)

→
(

Y
X

)

{∆i, Cijk}

⟨Oi(x)Oj(0)⟩ = δij
(x2)∆i

⟨Oi(x1)Oj(x2)Ok(x3)⟩ =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

2

⟨i j⟩ = ϵαβλαi λ
β
j , [i j] = ϵα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ϵ→ 0
∑

ℓ

ℓ− p1 − p2
1

ℓ2(ℓ−p1−p2)2

ℓ2 → 0(ℓ− p1 − p2)2 → 0
1
ℓ2
→ 2πδ(+)(ℓ2)

−→
x
←−−−−−−−−
blahblahblah

g
−−−−−→

sii+1

F (1)
n =

∑n
i=1 pi pi+1 pi+2

F (2)
n =

∑n
i=1

(

X
X

)

→
(

X
X

) (

X
Y

)

→
(

X
Y

) (

X
Y

)

→
(

Y
X

)

{∆i, Cijk}

⟨Oi(x)Oj(0)⟩ = δij
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⟨Oi(x1)Oj(x2)Ok(x3)⟩ =
Cijk

|x12|
αij |x23|

αjk |x31|αik
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Example: 4-pt amplitudeThe simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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For more general tree-level amplitudes, the existence of such a representation has
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The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,
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n =
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For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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Still a conjecture at loop level, relying on explicit constructions:

• 4-loop 4-point amplitudes in N=4
• 5-loop Sudakov form factor in N=4
• 2-loop 5-point amplitudes in pure YM

Proved at tree-level:

G. Yang, 2016

Bern, et.al, 2012

O’Connell and Mogull 2015

• String Monodromy relation
• BCFW recursion

Bjerrum-Bohr et.al 2009;  Stieberger 2009

Feng, Huang, Jia 2010

It is usually non-trivial to find CK dual solution at high loops.

Color-kinematics duality



3-loop integral topologies:

3-loop solution

160 strategy to construct the three-loop form factor solutions.
161 Readers are also referred to [12,36,48] for further details of
162 general constructions.
163 Constructing CK-dual solutions.—We first discuss the
164 form factor of trðϕ2Þ. The starting point is to construct a set
165 of trivalent graphs for the three-loop integrand. Each
166 diagram contains four external legs: three on-shell legs
167 pi and one off-shell leg q associated with the operator.
168 Following the empirical experience from the known high-
169 loop CK-dual solutions [12,22,23], we exclude graphs with
170 tadpole, bubble, and triangle subgraphs, unless the triangle
171 is attached to the q leg. We find that there are 29 trivalent
172 topologies to consider, as shown in Fig. 3.
173 Next we consider Jacobi relations for all four-point
174 subgraphs of these topologies. It turns out that all topol-
175 ogies can be generated by two planar topologies, shown in
176 Fig. 4, which are called master graphs. Once knowing the
177 numerators of these two master graphs, all other numerators
178 can be deduced via dual Jacobi relations (4).
179 To construct an ansatz for two planar master numerators,
180 it is convenient to use zone variables xi [49], such as x2a1 ¼
181 ðxa − x1Þ2 ¼ l2a shown in Fig. 4. Based on the nice UV
182 properties of N ¼ 4 SYM and half-BPS operators, we
183 impose the minimal power-counting condition for loop
184 momenta: a one-loop, n -point subgraph carries no more
185 than n − 4 powers of the corresponding loop momentum
186 [12], with an exception that if the subgraph is a one-loop
187 form factor, the maximal power is n − 3 [22]. Specifically,
188 for N1 (the first master in Fig. 4), xa, xc can appear at most

189once, so ðx2acÞ1 or ðx2aiÞ1ðx2ciÞ1, with i ¼ 1, 2, 3, 4, are
190allowed; whereas terms containing xb or containing more
191than one xa or xc, such as ðx2acÞ2; ðx2a1Þ2, are forbidden. For
192the other master numerator N2, only xa can appear with
193maximal power 2, thus only ðx2aiÞn with power n ¼ 2, 1, 0
194can appear. With these constraints, we obtain an ansatz
195form as linear combinations of monomials of zone variables
196with an overall dimension ½x8%, and two master numerators
197have 201 and 115 free parameters, respectively. Then we
198get an ansatz of the complete integrand with 316
199parameters.
200Given the ansatz, we further apply various constraints to
201fix the parameters. We first require numerators to respect
202the automorphism symmetries of corresponding graphs,
203see, e.g., [12,22]. This provides substantial constraints on
204the ansatz and reduces the number of parameters to 105. To
205fix the remaining parameters, we apply (generalized)
206unitarity cuts [8–10], where two examples of the most
207complicated quadruple cuts are illustrated in Fig. 5.
208Interestingly, after imposing a spanning set of unitarity
209cuts, there are still 24 parameters left. We point out that our
210integrand correctly reproduce not only planar but also
211nonplanar cuts, which ensures that the unitarity constraints
212are complete. Finally, we check that all dual Jacobi
213relations are satisfied. Thus, we get the physical three-loop
214integrand solution with 24 free parameters that also
215manifests CK duality.
216Following the above procedure, we also construct the
217three-loop integrand for the form factor of trðϕ3Þ. Since the
218operator contains three scalars, in the trivalent diagrams the
219q leg must be associated with a four-point vertex, as shown
220in Fig. 6. In this case, one can divide the three-loop
221topologies into two classes. The first class consists of

F3:1 FIG. 3. Trivalent topologies for the form factor of trðϕ2Þ.

F4:1 FIG. 4. Master graphs for trðϕ2Þ form factor.

F5:1FIG. 5. Quadruple cuts for three-loop, three-point form factors.

F6:1FIG. 6. Trivalent topologies for the form factor of trðϕ3Þ.
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F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (8)

The planar loop corrections take the BDS ansatz form:

I
(3)(✏) =�

1

3

�
I
(1)(✏)

�3
+ I

(2)(✏)I(1)(✏) + f
(3)(✏)I(1)(3✏)

+R
(3) + C

(3) +O(✏) , (9)

where

f
(3)(✏) = 4

✓
11

2
⇣4 + (6⇣5 + 5⇣2⇣3)✏+ (c1⇣6 + c2⇣

2
3 )✏

2

◆
,

with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider

�(3)
3 = ↵

X

i

X

j<k,j,k 6=i

f̃abef̃cde(T
a
iT

d
i +Td

iT
a
i )T

b
jT

c
k ,

(15)

where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients

I
(3)
O2,NP

���
✏�1

= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.

Finally physical 
solutions still contains 
24 free parameters !

We also perform 
(numerical) integration 
and obtain the 
integrated results, 
including 3-loop non-
planar corrections. 
(~10 million CPU core-hours)

Lin, GY, Zhang  PRL 2021
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

3

(b) (d)

(a) (c) (e)

(f)

FIG. 4. Examples of unitarity cuts.

nation of such a power-counting constraint can be found
in [42, 43], and here we just examplify it by the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be involved in the ansatz, while xb and xd are not
allowed to appear.

In practice, we can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs, which can be achieved
by starting from the rung-rule numerators [44, 45] and
then adding terms proportional to propagators according
to the graph symmetries. For instance, the rung-rule
numerator for the first master Nm

1 is

Nm
1 |rr =x2

13x
2
24x

2
a2x

2
a3(x

2
c1 � x2

14/2)� (x2
13)

2x2
24x

2
a2x

2
c4

� x2
13(x

2
14 � x2

13)(x
2
a2)

2x2
c4 + (1 $ 4)&(2 $ 3),

(4)
which captures the maximal cut of the diagram, and to
further complement the ansatz, contributions involving
propagators like x2

c2 and x2
c3 have to be considered in a

symmetry-preserving way, such as

Nm
1 = Nm

1 |rr+↵1x
2
13x

2
24((x

2
a2)

2x2
c3+(x2

a3)
2x2

c2)+... . (5)

In the end, a CK-dual integrand ansatz with 1433 pa-

rameters for F (4)
3 is reached, of which the four master

numerators contain 257, 562, 479 and 135 parameters
respectively.

PHYSICAL CONSTRAINTS AND SOLUTION

Given the ansatz, we apply various constraints to solve
for the parameters and also ensure the solution to satisfy
physical requirements.

First, we impose the condition that every numerator
Ni (besides the masters) shares the symmetry of the cor-
responding diagram �i and also generates the correct
maximal cut. These conditions involve only one numera-
tor at a time and are practically very convenient to solve.
Nicely, they provide significant restrictions on the ansatz,
reducing the number of parameters to 246.

Next, we require the CK-dual integrand ansatz as (3)
to match all generalized unitarity cuts [7–9]. Some typi-
cal cuts are illustrated in Figure 4. Cuts (a) and (b) are

relatively simple octuple cuts, cutting the four-loop form
factor into five tree blocks [46]. Such octuple cuts can
be first conducted, eliminating 94 parameters. Then the
septuple cuts, such as cut (c), and the sextuple cuts, such
as (d), are considered, further fixing 19 parameters. The
most complicated cuts are quintuple cuts like (e) and (f).
For instance, the cut (e) involves over a thousand cut dia-
grams, of which the sum should reproduce the non-trivial

tree product
R
d⌘F (0)

5 A
(0)
8 . We find that quintuple cuts

provide no further constraints on parameters indeed. Af-
ter all these cuts, we end up with a solution with 133
parameters. We stress that we have checked both planar
and non-planar cuts, and details for performing cuts can
be found in [43].

We also check that all dual Jacobi relations are satis-
fied. Thus we get the CK-dual four-loop physical inte-
grand in the form of (3) with 133 free parameters.

The final form factor result must be independent of
the 133 free parameters. As a further important check,
we find that the free parameters indeed all cancel after
performing the simplification of the integrand, which we
briefly explain as follows. Firstly, we express the triva-
lent color factors Ci in trace basis of group generators in
SU(Nc) gauge group, resulting in both Nc-leading and
Nc-subleading contributions as

F (4)
3 = F

(0)
3 f̃a1a2a3

�
N4

c

Z
I
(4)
pl +N2

c

Z
I
(4)
np

�
, (6)

where f̃a1a2a3 = tr(T a1T a2T a3) � tr(T a1T a3T a2). Here

76 topologies contributes to I
(4)
pl , containing diagrams

in the first and second columns of Figure 2, while 138

topologies contribute to I
(4)
np , involving those in the third

column of Figure 2. Note that 28 topologies contribute

to both I
(4)
pl and I

(4)
np , including the four master graphs

and also (A3) and (B3) in Figure 2. Moreover, it worth
noticing that 43 topologies out of 229 have zero color fac-
tors, such as (D2) in Figure 2, which do not contribute
to the final form factor but are important in the con-
struction via the CK duality. We then perform the sim-

plification for I
(4)
pl and I

(4)
np respectively, by expanding

the integrands in a set of basis, following the procedure
described in detail in [43]. After the simplification, we
achieve a result that is independent of all free parame-
ters.

The explicit four master numerator solutions with 133
free parameters and a set of dual Jacobi relations for
generating the numerators Ni of all trivalent topologies,
together with the symmetry factors Si, the color factors
Ci, and the propagator lists P↵i in the form of (3), are
provided in the ancillary files.

Unitarity cuts

2

those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet

(A1) (B1)

(A2)

(A3)

(B2)

(B3)

(C1)

(C2)

(C3) (D3)

(D2)

(D1)

FIG. 2. Selected four-loop diagrams from the 229 topologies.
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FIG. 3. Master topologies.

q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-

Final solution with 133 free parameters!

Master graphs



Example: 3-point form factor

where in the second equation we express the result in spinor helicity form in four dimensions.

A well-defined quantity in gravity should preserve the di↵eomorphism invariance, in other

words, it should be invariant under a transformation of graviton polarization tensor: "
µ⌫

3
Ñ

"
µ⌫

3
` p

pµ
3
⇠
⌫q. Here "

µ⌫

3
“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
naive

3 “ p"3 ¨ p2q2
s23

` p"3 ¨ p1q2
s13

“ "
µ⌫

3
p2µp2⌫

s23
` "

µ⌫

3
p1µp1⌫

s13
, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as

F 3p1�, 2�, 3gq “
´ 1

s23
` 1

s13

¯
C1N

CK
1 “ C1F3p1�, 3g, 2�q , (3.10)

where in the second equation we apply the color decomposition and F3 is the color-ordered

three-point form factor given in (3.7). Thus one finds CK-dual numerator solution as:

N
CK
1 “ N

CK
2 “ s13s23

s13 ` s23
F3p1�, 3g, 2�q . (3.11)

We stress that the numerators are uniquely determined and are also manifestly gauge invari-

ant.

When applying the double copy for (3.11), giving

G3 “ pNCK
1

q2
s23

` pNCK
2

q2
s13

“ s13s23

s13 ` s23

´
F3p1�, 3g, 2�q

¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that
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When applying the double copy for (3.11), giving
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q2
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2

q2
s13

“ s13s23

s13 ` s23

´
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¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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�(p1)

S(q)

�(p2)

h(p3)

�(p1)

S(q)

�(p2)

h(p3)

S(q) �(p1)

�(p2)h(p3)

Figure 2. Feynman diagrams for the double copy of the three-point form factor in gravity theory.
The blue double line in this case is the massive scalar with mass m2 “ q

2. The black straight line is
still the (light) scalar while we doubled the spring line to represent gravitons.

is the three-point planar amplitude of a gluon and one pair of massive scalar particle S with

mass m
2 “ q

2 “ q2

2
, see e.g. [2]. In this way (3.13) can be interpreted as a factorization

formula

Res rG3s
s12“q2

“ G2p1�, 2�q M3pqS

2 ,´q
S
, 3hq , (3.15)

where G2 “
`
F2

˘
2
is the double copy of the minimal form factor and M3 “ pA3q2 is the

double copy of the three-point amplitude.

Clearly, (3.15) represent the factorization of the third Feynman diagram �c in Figure 2.

Furthermore, one can check that (3.13) also give a consistent factorization on the s13 and s23

poles (which also appear in the gauge form factor), e.g.:

Res rG3s
s23“0

“ G2p1�,p�

23
q M3p´p�

23
, 2�, 3hq , (3.16)

Res rG3s
s13“0

“ G2p2�,p�

13
q M3p´p�

13
, 1�, 3hq , (3.17)

and they correspond to �a and �b respectively.

Let us write (3.12) in a form that will be useful later:

G3 “ F3p1�, 3g, 2�qSF

3 F3p1�, 3g, 2�q , SF

3 “ s13s23

s13 ` s23
. (3.18)

Another nice property is that by taking the “square-root” of the double copy factorization

(3.13), one can get a relation for the gauge-theory form factor:

s13F3p1�, 3g, 2�q
ˇ̌
s12“q2

“ F2p1�, 2�q A3pqS

2 , 3
g
,´q

Sq . (3.19)

In this three-point example, one may wonder that these properties could be accidental, in

particular, the two-point results are trivial G2 “
`
F2

˘
2 “ 1. As we will see shortly, these nice

properties apply to more non-trivial higher point cases as well.

3.2 Four-point case

Now we try to generalize the above discussion to higher points. Concretely, we discuss (i)

how to get the numerators in general, (ii) discuss a KLT-like double copy formula and the

di↵eomorphism invariance, (iii) discuss the properties of the KLT kernel and the numerators,

and (iv) end up with factorization properties of the double copy result. The four-point

example can capture most of the characteristics and help to clarify the generalization.

– 5 –

�(p1)

q

�(p2)

g(p3)

�(p1)

q

�(p2)

g(p3)

Figure 1. Feynman diagrams for the three-point form factor in gauge theory. The blue double line
with arrow represents operator insertion. The black straight line and spring line are (light) scalars
and gluons respectively.

3 Double copy for form factors in scalar-Yang-Mills theory

In this section, we consider the double-copy of form factors in the scalar-Yang-Mills theory:

L
sYM “ trpFµ⌫F

µ⌫q ` trpDµ
�Dµ�q (3.1)

The gauge field Aµ “ A
a
µT

a and the scalar � “ �
a
T
a are both in the adjoint representation,

where T
a are the generators of gauge group satisfying rT a

, T
bs “ if

abc
T
c. The covariant

derivative acts as Dµ ¨ “ Bµ ¨ `igrAµ, ¨ s, and rDµ, D⌫s ¨ “ igrFµ⌫ , ¨ s. We focus on the form

factor of the operator trp�2q:

Fnp1�, 2�, 3g, . . . , ngq “
ª
d
D
x e

´iq¨xx�pp1q�pp2q gpp3q . . . gppnq|trp�2qpxq|0y . (3.2)

The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are

N
Feyn

1
“ ´"3 ¨ p2 , N

Feyn

2
“ "3 ¨ p1 . (3.6)

One can also obtain the color-ordered form factor (associated with color factor trpT a1T
a3T

a2q):

F3p1�, 3g, 2�q “ ´"3 ¨ p2
s23

` "3 ¨ p1
s13

4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)

– 3 –

A new graph 
in gravity

There is a nice factorization behavior at the new pole:
s13 + s23 = q2 − s12 = 0



Ansatz of the form factors
Our result provides a first two-loop five-point example with a 
color-singlet off-shell leg.

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1,2,3,4 |𝒪(x) |0⟩

i
j

k

l

{s12, s23, s34, s14, s13, s24, tr5}; tr5 = 4iεp1p2 p3p4

H



The form factor we consider

A two-loop four-point form factor in N=4 SYM:
H

As an N=4 version of Higgs+4-parton amplitudes in QCD.

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

Five-point two-loop amplitudes are at frontier and under intense study:

There have been many massless five-point two-loop amplitudes 
obtained in analytic form.

For five-point two-loop amplitudes with one massive leg, very limited 
results are available: Badger, Hartanto, Zoia 2021
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Simon Badger,1, ⇤ Heribertus Bayu Hartanto,2, † and Simone Zoia1, ‡

1
Dipartimento di Fisica and Arnold-Regge Center, Università di Torino,
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We present an analytic computation of the two-loop QCD corrections to ud̄ ! W+bb̄ for an
on-shell W -boson using the leading colour and massless bottom quark approximations. We perform
an integration-by-parts reduction of the unpolarised squared matrix element using finite field recon-
struction techniques and identify an independent basis of special functions that allows an analytic
subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for
five-particle scattering with an o↵-shell leg.

INTRODUCTION

The production of aW -boson in association with a pair
of b-quarks at hadron colliders is of fundamental impor-
tance as a background to Higgs production in association
with a vector boson. The process is one of a prioritised
list of 2 ! 3 scattering problems for which higher or-
der corrections are necessary to keep theory in line with
data. These amplitudes are related to a large class of
processes contributing to pp ! W + 2j production and
the work presented here represents a significant step to-
wards achieving a complete classification of the missing
two-loop amplitudes.

The process has been studied extensively at next-to-
leading order (NLO) [1–5] and was the first in a set of
o↵-shell five-particle amplitudes to be studied using the
unitarity method [6, 7]. The present state of the art in
phenomenological studies allows full mass e↵ects, shower
matching, electro-weak corrections and the inclusion ad-
ditional QCD jets [8–10].

A numerical computation of the two-loop helicity am-
plitudes [11] demonstrated the importance of an e�cient
analytic form with a well understood basis of special func-
tions. Major steps forward came via e�cient numeri-
cal evaluation of the di↵erential equations [12] and ana-
lytic evaluation in terms the Goncharov Polylogarithms
(GPLs) [13, 14]. These results opened the door for a fully
analytic amplitude computation yet significant challenges
remain. The complexity of the external kinematics rep-
resents a challenge for integral reduction techniques and
the identification of a minimal basis of special functions is
required to find analytic simplifications after subtracting
universal infrared and ultraviolet divergences.

E�cient amplitude and integration-by-parts reduction
(IBP) [15, 16] using finite field arithmetic [17–27] has
gained significant interest in recent years. Through mul-
tiple evaluations of a numerical algorithm [28–31], fully
analytic forms for planar massless five-particle ampli-
tudes have been extracted using a rational parametri-
sation of the kinematics [32]. Following a complete
understanding of a pentagon function basis [33, 34], a

large number of two-loop amplitudes are now available
in compact analytic form [35–47]. We have also seen
the first phenomenological predictions at NNLO in QCD
for the production of three photons in hadron colliders
after combination with real-virtual and double real radi-
ation [48, 49].
In this short letter we outline the extension of this

method to processes with an additional mass scale.

LEADING COLOUR ud̄ ! W+bb̄ AMPLITUDES

The leading order process consists of two simple Feyn-
man diagrams as shown in Fig. 1. We label our process
as follows,

d̄(p1) + u(p2) ! b(p3) + b̄(p4) +W
+(p5), (1)

where p
2
1 = p

2
2 = p

2
3 = p

2
4 = 0 and p

2
5 = m

2
W . The colour

decomposition at leading colour is

A
(L)(1d̄, 2u, 3b, 4b̄, 5W ) =

n
L
g
2
sgW �

ī4
i1

�
ī2

i3
A

(L)(1d̄, 2u, 3b, 4b̄, 5W ), (2)

where n = m✏Nc↵s/(4⇡), ↵s = g
2
s/(4⇡) and m✏ =

i(4⇡)✏e�✏�E . gs and gW are the strong and weak cou-
pling constants respectively.
We interfere the L-loop partial amplitudes A

(L) in
Eq. (2) with the tree-level partial amplitude A

(0) to ob-
tain the unrenormalised L-loop unpolarised squared par-
tial amplitude,

M
(L) =

X

spin

A
(0)⇤

A
(L)

. (3)

p
1

p
2

p
3

p
4

p
5p

3

p
4

p
1

p
2

p
5

FIG. 1. Leading order Feynman diagrams contributing to
ud̄ ! W+bb̄ .
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Outline of two-loop computation

4

j

k

l

i

`1

(a) BPb

j

k

l

i
`1

(b) TP

i

j k

l

`1 `2

(c) dBox2c (d) Unitarity cuts

FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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coefficients

ℱ(2),ansatz
𝒪,4 = ∑

i

Ci I(l)
i

ℱ(2)
𝒪,4 = ∑

i

Ci I(l)
i


