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o Effective field theory and form factors
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Scattering amplitudes

Amplitudes

In past 30 years, significant progress has been made in
the studies of scattering amplitudes.



Feynman diagram

Standard textbook method:

e universal
e simple rules

* Intuitive picture

(. ()




Feynman diagram

“Like the silicon chips of more recent years, the Feynman diagram
was bringing computation to the masses.”

— Schwinger



Feynman diagram

11

Yes, one can analyze
experience into individual pieces of topology. But eventually one
has to put it all together again. And then the piecemeal approach
loses some of its attraction.”

— Schwinger



Feynman diagram

Practical application can be very complicated.

n-gluon tree amplitudes:

# graphs 220 2485 34300 5594056 10525900



Surprising simplicity

Practical application can be very complicated.

n-gluon MHV tree amplitudes:

n-gluon tree amplitudes:

# graphs I

220

2485 34300 559405 10525900

[Parke, Taylor, 1986]
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Written in spinor helicity formalism (Chinese Magic)
by Xu, Zhang, Chang 1984



L essons from modern amplitudes

Such simplicity is totally unexpected using traditional Feynman diagrams.

Conceptually: Methodologically:

New structures and New powerful
new formulations computational methods



Modern amplitudes methods

“A Renaissance of the S-Matrix Program”

S-matrix program

S-matrix bootstrap by
Chew, Mandelstam, etc
1950s-1960s

Wheeler 1937
Heisenberg 1943

Modern amplitudes
On-shell methods



The Analytic
S-Matrix

S-matrix program

“The S-matrix is a Lorentz-invariant analytic function of all

momentum variables with only those singularities required
by unitarity.”

“One should try to calculate S-matrix elements directly,
without the use of field quantities, by requiring them to
have some general properties that ought to be valid, ....”

— Eden et.al, “The Analytic S-matrix”, 1966



S-matrix bootstrap

Unitarity:  sT9 =1 =881 — —i((f[7}i) — (A7) = S (FITHX) (X))

In(58C5) = 3 [00) (80

Dispersion relation:

Im[A] = Aw~ | Ll fs | o e

contributions)




A bubble-integral example

Let us compute this integral via S-matrix bootstrap:
dPl, 1 L
I,(P?) = X
() /(QW)DP(Z—P)? =

Step 1: compute discontinuity

Disc[I2(P*)] =/(ZZW?D(—27Tﬁ)5(l2)(—2ﬂﬁ)5((l—P)Q) - —(Y;Q:;rg_:) ?@%ﬂ

Step 2: apply dispersion relation s=r? <0,

‘ s
1  dt o i . _TD(eT?(1 —¢) B0 e 3
Bis) = 5z [ F g Diselha] = g (-9

- % F(Z — 26) 0 < )9

Cutkosky cutting rule: L. 7 ~L->r* = (-x6) §(L°)




Modern amplitudes methods

S-matrix program is replaced by the Standard Model since
late1960s.

New ingredients in the modern on-shell methods:

 Working at perturbative level

* (Generalized unitarity cuts

* Use of good variables, e.g. spinor helicity

« New mathematical functional structures (e.g. symbol)

* Using simple toy models (N=4 SYM) as testing ground

e.g. tree-level BCFW recursion relations, unitarity-cut methods

Bern, Dixon, Durban, Kosower 1994; Britto, Cachazo, Feng, Witten, 2004



Modern amplitudes methods

A gquestion:

In the optical theorem, unitarity can be used to compute
only the imaginary part. How can the modern on-shell
methods compute the full amplitudes via unitarity cuts?



One-loop structure

Consider one-loop amplitudes:

TOL =5k T +56 P< o+ zh XK
N,

What we really want




Unitarity cuts

Using simpler tree-level blocks, one can derive the coefficients
more efticiently:

"/ :,, {// l,, ’
- 7 3%: s ds ‘=g*10);>< +Zbc>§b<

[Bern, Dixon, Dunbar, Kosower 1994]

generalized multiple cuts  [Britto, Cachazo, Feng 2004]

Cutkosky cutting rule: £ 7 3->r- = (x6) §(¢Y)




Loop Integrands

Both the basis coefficients and integrand are rational functions,
once they are obtained, one has the information for the full
amplitudes.

@% = Tutegromol /

kb - cuks

Comments on the integral reduction and evaluation:

work by Bo Feng, Song He, Zhao Li, Li-Lin Yang, Yang Zhang, etc.. (an incomplete list)

Notable new efficient numerical method by Xiao Liu and Yan-Qing Ma: AMFlow package

See the talk by Hua-Xing Zhu
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> Effective field theory and form factors



Effective field theory

Standard Model effective field theory:

Cc™
ZLsmerr = Lsu + 2 Z ]\14” @,(-n)

n>1 i

Contribution from higher dimensional operators are

suppressed by powers of (%)

Fermi theory of weak interactions is such an example.

Effective field theories, mostly for QCD:
HQET, SCET, ¥PT, NRQCD (NRQED, NRGR)



HIQQgs Er T

Effect luon-Hi fex:
My — 00 ective gluon-miggs vertex

4
H — 1 1
Log = CoOp + —5 Z C;0; + O <—4)
mg i=1 T
Dimension-5 operator Dimension-7 operators
00 = HtI'(FIMVF'MU) 01 Htr(F,"F,PF,1),

— Htr(D,F,, D F*)
— Htr(DF,, D, F"),
04 — Htr(F,,D’ D, F")

Higgs plus jet production p% 99999



Effective field theory

A effective field theory:

Cc™
Zerr = <o+ Z Z ]\;n 0"

n>1 i

Two central ingredients:

0"(u) Local operators

Ci(”)(ﬂ) Wilson coefficients



Effective field theory

Problems in EFT studies:

o Classification of operators  work by Yi Liao, Jing Shu, Jiang-Hao Yu, etc..

e Constraining Wilson coefficients work by Cen Zhang, Shuang-Yong Zhou, etc..
 Renormalization and RG

e Amplitudes in EFT



On-shell form factors

ybrids of on-shell states and off-shell operators:

Fn,(’)(l 7777 n) — /‘d43j e_iq.w <p1 . pn‘0($)|0>

= 5(4)(21% —q) {p1 - .. pa|O(0)]0)

. _ 2
(work in momentum space) q = Z pi, G4~ F0
1

(P1P2---P410) (0,0,...0,)

| \
s A\\.;
O

Form factors



Minimal tree form factors

One can translate any local operator into “on-shell” kinematics |

—> Or & Fo,r(1,...,L)

ﬂ» E—

|
A\

Examples:
3
O3 = $0,$0"P Fo (123 =gy p,.)<s12 b8y + S13>
=1
2
0, = tr(F,, F™) Fo,0(12) = 6%q = Y, p)|(er - e)(pr - ) = (€ - pa)es )|

i=1

2
or 9‘7@2’2(1_,2_) = 5D(q — Zpi) <12>2
i=1



Minimal tree form factors

One can translate any local operator into “on-shell” kinematics |

)
——> O, & FOL,L(l,...,L /
7 q %
. B \
r—>
Dictionary for YM operators:
operator | Daa | fap s 5 operator | D, F.
spinor | AgAa | dadg | —Aa) 4 kinematics | p, | PuEy — PvEp
4-dim Bl — FadﬁB — eaﬁfdﬁ' + Edﬁ'faﬁ D-dim

Important for capturing

Zwiebel 2011, Wilhelm 2014 ) )
Evanescent operators

tr(F FTE) = AN A Aoy M Aas = [12)[23][31]

Jin, Ren, GY, Yu, 2202.08285



On-shell methods

\ Form Factors
Scattering Amplitudes

| 1

On-shell methods can be applied to operators and study EFT,
for both the operator construction and high-loop renormalization.
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Some recent progress



YM Spectrum and Higgs Amplitudes

* 1804.04653 [Phys.Rev.Lett. 121 (2018) 101, 1904.07260, 1910.09384, with Qingjun Jin (87K %)
« 2011.02494 with Qingjun Jin, Ke Ren ({E8]);
« 2202.08285, 2208.xxxxx, with Qingjun Jin, Ke Ren; Rui Yu (R &)



High-dimensional YM operators

We consider Lorentz scalar gauge invariant local operators:

a;

aTl
O(X) ™~ C(al’ e an)X(nuv)(DHu "'DH1m1 FV1P1) o (D.um "'DMnmn F”npn) (X)

Classically, operators are generally not independent:

Equation of motion: Bianchi identities:
v __ —
D, Fr = 0 D,F,+DJF,+D,F, =0

At quantum level, different operators can mixing with each
other via renormalization:
dlogZ

@R,i = ZiJ@Baj —> D=- d log y >» I @eigen =7 @eigen




Form factors and on-shell methods

Previous results were known mostly at one-loop up to dimension-8.
Gracey 2002; Dawson, Lewis, Zeng 2014; ...

Form factors can help tackle these problems to high dimensions
and to high loop orders.

C0sr O oo ol
(a) (b) (c) (d) i
Py PN\




Mixing matrices and spectrum

Two-loop anomalous dimensions for length-3 operators up to dimension 16:
Jin, Ren, GY 2020

dim 4 6 8 10 12 14 16
(1) 22 / 7 71 241 101 61 172 331 1212+£+/3865
Tt 3 3 15 30 ’ 15 6 21 35 7 105
231568398949
(2) _ 136 / 269 2848 49901119 8585281 4392073141 685262197 4253886000 °
Vf,a 3 18 125 1404000 ’> 234000 87847200 ° 15373260 355106171452034+955881589511/3865
6576507756000
(1) 22 17 43 67
Tr.B 3 1 / 3 9 5 6
(2) 136 25 / 2195 79313 443801 63879443
1.8 3 3 72 1800 9000 1058400
(1) / / / 13 41 55143609 321+£+/1561
Vd,o 3 6 60 30
(2) / / / 575 46517 58093058974+19635401/609 229162584707+2256587921/1561
Vd,a 36 1440 131544000 4130406000
(1) 67
Yas |/ /[ |/ / 9 / I
(2) 150391 174229
Va,8 / / / / 3600 / 3150

Two-loop renormalization for higher length operators.  Jin. Ren. GY. Yu to appear
(Evanescent operators are important for computing 2-loop AD.)



Master-bootstrap method

e 2106.01374 [Phys.Rev.Lett. 127 (2021) 15, with Yuanhong Guo (2BE%). Lei Wang (E&)

e 2205.12969, with Yuanhong Guo, Qingjun Jin, Lei Wang



Master bootstrap methoa

Guo, Wang, GY PRL 2021

Ansatz in master : z Solution of
— Physical constraints Jasmmnd o
coefficients

iIntegral expansion

IR divergences F (D.ansatz. Z .10
i

Lo};(l),ansatz — Z C. I(l)
L7
i

Collinear factorization

Spurious-pole cancellation

Unitarity cut

We apply this strategy to the frontier two-loop five-point
scattering (Higgs plus four partons):




Master bootstrap methoa

Ansatz in master . . Solution of
: ; — Physical constraints Jasmmnd o
iIntegral expansion coefficients

IR divergences F (D.ansatz. Z .10
i

Lo};(l),ansatz — Z C. I(l)
L7
i

Collinear factorization

Spurious-pole cancellation

Unitarity cut

The strategy does not rely on special symmetries of the theory, thus
can be applied to general theories.



Maximal Transcendentality Principle

Maximal transcendentality principle

Kotikov, Lipatov, Onishchenko, Velizhanin 2004

N=4 SYM + — QCD

N=4 result is equal to the maximally transcendental part in QCD

Conjecture for certain quantities

We are able to prove the previously observed maximally transcendental
correspondence for Higgs amplitudes (form factors) and also find new
non-trivial example.

Guo, Jin, Wang, GY 2205.12969




Color-kinematics duality and
double-copy of form factors

e 2106.01374 [Phys. Rev. Lett. 127 (2021) 171, 2111.03021, 2112.09123, with Guanda Lin (f7&
iX), Siyuan Zhang (52 jJF)

e 2111.12719, 220x.xxxxx, with Guanda Lin



Strategy of loop computation

CK-duality
Conjecture ~u

Ansatz of the .
loop integrand @’\ @

i Unitarity cuts

Solving linear equations




Strategy of loop computation

CK-duality
Conjecture ~u

Ansatz of the .
loop integrand @'\ ’@

i Unitarity cuts

Solving linear equations

Main challenge: it is a prior not known whether the solution exists



Results up to four loops

Fq= [d4x e py, Py Py |[T(F)(x) [ 0)  was

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters Cl 4 24 133 )

It is promising to go to higher loops. g PRL 2021

In the large-N limit, the remainder function was computed recently to 8 loops
via symbol bootstrap and the (non-perturbative) OPE input.

Dixon, Gurdogan, McLeod, Wilhelm 2204.11901
Sever, Tumanov, Wilhelm, 2009.11297 (FFOPE)



Form factor double-copy

Gauge x Gauge Cosio-<er

* An surprising new mechanism for form factors:  Lin 6y 2111.12719

Real propagators

Gauge theory Gravity theory

Double-copy

—_—

Spurious poles

 Hidden factorization relations of gauge form factors

77Fn :FmXAn—I—Q—m

‘ spurious pole



Summary and outlook



summary

* We review the S-matrix bootstrap and modern on-shell methods

* EFT and operators can be studied using on-shell techniques.

Eal__1r

Amplitudes 4 > Operators

* We briefly mention some recent progress on form factors and
their applications.



Outlook

Expectation:

All quantities that can be calculated using Feynman diagrams
can be computed more efficiently with on-shell methods

* Consider more generic operators in general EFT, such as operators
with fermion or massive fields, non-local operators, etc. A goal is to
provide a two-loop framework for general EFT renormalization and
EFT amplitudes.

* Explore hidden structure of renormalization and EFT amplitudes.

« Bootstrap beyond perturbation



Outlook

Expectation:

All quantities that can be calculated using Feynman diagrams
can be computed more efficiently with on-shell methods

* Consider more generic operators in general EFT, such as operators
with fermion or massive fields, non-local operators, etc. A goal is to
provide a two-loop framework for general EFT renormalization and
EFT amplitudes.

* Explore hidden structure of renormalization and EFT amplitudes.

« Bootstrap beyond perturbation

Thank you for your attention!



Extra slides



A bird's eye view

“Modern” on-shell method

Building blocks Tree amplitudes |-0 amplitudes

m Higher points Higher loops

inimal FF \

CSW

Integrand level

Unitarity-IBP



MHV tree form factors

MHV structure Of form factors: Brandhuber, Spence, Travaglini, GY 2010
FYIV(LT gy o ¥ t1(62) = 883 91 — 0) s
n y o9 by oy Sy oo 9 ) <12><n1>

1=1

‘q=2pi, pf =0, QQ#O‘
2

Compare with Parke-Taylor formula for amplitudes:

. Sy
An V(1+,..,Z yeey ] ,..,n+)—5 (;p@)<12><n1>

0 =) p;, pff=0|
7




High-dimensional YM operators

We consider Lorentz scalar gauge invariant local operators:

O(X) ™~ C(al’ B an)X(’r)‘uv)(D.UJH “'D‘Ll,lml Fvlpl)al o (D.unl ”.Dnun npn) (X)

D/J' * = a,u —|_ Zg[A/uh*] ? [D,u7 DI/] * = ZQ[FMV,*} Flu,y - FCL TCL, [TCL’Tb] = ifCLbCTC

0%

They are color-singlet gluon states and also appear as
Higgs-gluon effective interaction vertices in Higgs EFT:

Lef = COHO4O‘|'Z 2k ZC'HO4+2m
k=1

—




Evanescent YM operators

Parity-even gluonic evanescent operators start to appear at

mass dimension 10:

(0) _ (0)
FOi,nZL‘AL-dim =0, FO%,L’d—dim 7 0
. o
Oe — Eégfﬁsﬁgﬁj@itr(DV5FM1M2F,LL3,LL4DM5FV1V2FV3V4) HHL--Hn — det(&b) —
V1...Un 1% .
Oy’

.7:&)(1, 2,3,4) = 2§€162P1P2P3 | 9 §€1€4D1DAD2

€3€4P3P4P1 €2€3pP2P3pP4

1
e

gk




High-dimensional YM operators

On-shell unitarity-IBP method:

;(1))

= l_[(Tree blocks) = Cut integrand

IBP with cuts.> Z e (1 |CUt)

L

08 O ooy, ol
(a) (b) (c) (d)

Z><<§

ps3

P1

PIN

D3 /

Z§<E




Mixing matrices and spectrum

Loop form factor = (Universal IR div.) + (UV div.) 4+ (Finite part)

Form factors contain both IR and UV divergences, by subtracting
the universal IR, one can obtain the UV renormalization matrix.

Dimension-8: (up to length-3)

—ZA-LE 0
3 .3 A A A
IDOg — —%:2 %)\ + @)\2 10)\2 ’Aygg = {—%; 1; -
—3% 0 A+BN

~(2

{

186 25 269
373718

|



Finite remainder

The finite remainders -> Higgs amplitudes with high-order top
mass corrections in Higgs EFT.

There are “universal building blocks” that are independent of
the operators:

The full transcendentality degree-4 part is universal:

Rg)’i degd gLM(u) i ELM (_%) - Zlog(w) [Li?) (—%) + Lis (—%)}
N log”(u) log®(u) + log?(v) + log®(w) — 4log(v) log(w)]

32

+ % 51og?(u) — 2log(v) log(w)] — i@i + perms(u, v, w) ,

“maximal transcendentality principle”



Color-kinematics duality

In 2008 Bern, Carrasco and Johansson proposed an intriguing
duality between color and kinematics factors:

Duality

Color factor

Kinematic factor

(conjecture)
o =Te(([T°, T'|T) sij = (pi + ;)7

Gauge symmetry Spacetime symmetry



Example: 4-pt amplitude

2 3 2 3 2 3
; e
t
Uu
1 4 1 4 1 4

Clly Gy G,
I

S [ u

A, (1,2,3,4) =

Cs = fa1a2bfba3a4, cp = fa2a3b]?ba4a1, Cy = fa1a3bfba2a4

Cs =Ct T+ Cp = MNg =Nt T Ny

dual Jacobi relation

Jacobi identity




Color-kinematics duality

Proved at tree-level:
) Strlng |\/|0n0dr0my relation Bjerrum-Bohr et.al 2009; Stieberger 2009
- BCFW recursion  Feng, Huang, Jia 2010

Still a conjecture at loop level, relying on explicit constructions:

* 4-loop 4-point amplitudes in N=4  Bemn. etal 2012
- 5-loop Sudakov form factor in N=4 6. Yang. 2016
+ 2-loop 5-point amplitudes in pure YM  0'Connell and Mogull 2015

It is usually non-trivial to find CK dual solution at high loops.



3-loop solution

3-loop integral topologies:

—)

>

> > > )y

e

—-

> < > < > <
> < > < > <
> > > )

\/X\”—<iE<

Ji3
A
¥a)
V)

'R

1 C;N;
Fﬁig—f&zz/mﬂe]s .

o3 ) 67 ag

Lin, GY, Zhang PRL 2021

Finally physical
solutions still contains
24 free parameters !

We also perform
(numerical) integration
and obtain the
integrated results,
iIncluding 3-loop non-
olanar corrections.

(~10 million CPU core-hours)



Master graphs

L4

A

Four loops

L1 L1 L1

Tq

L

L2 L4

\4
A

Lp| L2 L4 L2 T4
Tl e Ld

xd L2

\4
A
\4
A
\4

G. Lin, GY, S. Zhang, 2112.09123

L3

AUnitarity cuts -t s e AT T R el

L3 L3 L3




Example: 3-point form tactor

N CK 2 NEK 2 9
Gy — (NT™) n (N5™) _ 513523 (f3(1¢73972¢))
$93 513 S13 T 523

There is a nice factorization behavior at the new pole:

_ 2 _
S3t 83 =9 =5, =0

Res[Gal,,,_2 = (e3-0)? = (F2(1%,29))° x (As3(a5, 3%, —¢%))?
~ ™)
q 9(ps) 9(ps) q S(q) h(ps)  h(ps) S(q) | hlps (p2)
¢<p1>>_§><p2> ¢><p1;_<¢<p2> - ¢<p1>>_§¢(pg> ¢<p1>% <b<p2> S(qj <¢<p1>
— _
A new graph

N gravity




Ansatz of the form factors

Our result provides a first two-loop five-point example with a
color-singlet off-shell leg.

F o4 = [d4x e™'9%(1,2,3.4| 0(x)|0)

15125 8235 8345 8145 13> S24» (5 }; trs = 418p1p2p3p4

<] TIT<IF < &




The form factor we consider

A two-loop four-point form factor in N=4 SYM:

F = [d“x 151,234 | (@) | )

As an N=4 version of Higgs+4-parton amplitudes in QCD.

Five-point two-loop amplitudes are at frontier and under intense study:

There have been many massless five-point two-loop amplitudes
obtained in analytic form. see e.g. Abreu, Dormans, Cordero, Ita, Page 2019 and many others. ...

For five-point two-loop amplitudes with one massive leg, very limited

results are available: ud — VW T bb Badger, Hartanto, Zoia 2021



Outline of two-loop computation

.Ansatz N mast_er (2) ansatz __ Z C, ](1) Guo, Wang, GY PRL 2021

N\

Integral expansion

Constraints Parameters left

Symmetry of (p1 <> p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to € order §)

Simple unitarity cuts 0 Solution of

\ coefficients

FO = Z C, 10



