Longitudinal flow decorrelation in ⁹⁶Zr+⁹⁶Zr and ⁹⁶Ru+⁹⁶Ru collisions within a multiphase transport model

Maowu Nie (聂茂武)

Aug. 09, 2022

Collaborators: Chunjian Zhang, Zhenyu Chen, Li Yi and Jiangyong Jia

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Longitudinal dynamics of in heavy-ion collisions

Longitudinal fluctuation can provide full space-time evolution of QGP.

Flow decorrelation observable

Factorization ratio, r_n, is constructed as a measure of the flow decorrelation

$$r_{n}(\eta) = \frac{\langle V_{n}(-\eta)V_{n}^{*}(\eta_{\text{ref}})\rangle}{\langle V_{n}(\eta)V_{n}^{*}(\eta_{\text{ref}})\rangle}$$
$$= \frac{\langle v_{n}(-\eta)v_{n}(\eta_{\text{ref}})\cos n(\Psi_{n}(-\eta)-\Psi_{n}(\eta_{\text{ref}}))\rangle}{\langle v_{n}(\eta)v_{n}(\eta_{\text{ref}})\cos n(\Psi_{n}(\eta)-\Psi_{n}(\eta_{\text{ref}}))\rangle}$$

If no decorrelation, $r_n(\eta) = 1$; The deviation of $r_n(\eta)$ away from 1 will direct quantify flow decorrelation.

A large η gap is imposed to avoid short-range correlations.

CMS, Phys. Rev. C 92 (2015) 034911 J. Jia, P. Huo, G. Ma and MWN, J. Phys. G: Nucl. Part. Phys. 44 (2017) 075106

Current results on longitudinal dynamics

CMS, Phys. Rev. C 92 (2015) 034911

• r_n is well measured at LHC and RHIC.

• Crucial observable for $2+1 D \rightarrow 3+1 D$ hydro.

Connecting initial state to final state: geometry response

initial state

final state

 $V_n \propto \mathcal{E}_n$

Connecting initial state to final state: geometry response

Nuclear structures are important for heavy-ion initial state and final state evolution.

Nuclear structure studies with the unique isobar collisions

同量异位素碰撞

$$rac{\mathcal{O}_{\mathrm{Ru+Ru}}}{\mathcal{O}_{\mathrm{Zr+Zr}}} \stackrel{?}{=} 1$$

$$ho(r, heta,\phi) = rac{
ho_0}{1+e^{(r-oldsymbol{R}_0\left(1+\sum_noldsymbol{eta}_nY_n^0(heta,\phi)
ight))}}$$

Species	β_2	eta_3	a_0	R_0
Ru	0.162	0	0.46 fm	5.09 f
Zr	0.06	0.20	$0.52~{ m fm}$	5.02 f

Wang, J. Zhao, L. Chen, and F. Wang, Phys. Rev. Lett. 125, 222301 (2020)

Nuclear structure \rightarrow Longitudinal dynamics ?

v₂ decorrelation in isobar within AMPT

- $r_2(\eta)$ is consistent in 0-10% for Ru+Ru and Zr+Zr.
- Slight deviation in 10-40%, especially at large rapidity range.

v₃ decorrelation in isobar within AMPT

AMPT vs. STAR results

Gaoguo Yan(闫高国), QM2022

11

- No clear difference in 0-10%
- 1% difference in 10-40% due to the presence of large β_3 in Zr.

larger average geometry less fluctuation less decorrelation

Up to 4% difference in 0-10%.

- Significant deviation from unit is observed for the isobar ratio of r_n in the presence of deformation, especially for r₃.
- heavy-ion collisions.

Summary

• Longitudinal flow decorrelation can provide new constrains on the nuclear structure study in

