

中国科学院高能物理研究所 Institute of High Energy Physics, CAS

Recent Progress of the High Field Superconducting Magnet R&D for Next-generation Particle Colliders

Qingjin Xu for the Superconducting Magnet Team of IHEP-CAS

August 9, 2022

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 2022.08.08-11, 大连

R&D Roadmap of the High Field Dipole Magnets

R&D Steps of the High Field Accelerator Magnets

Tension control, deformation J_c and RRR degradation, Flux jump...

Temperature control, Thermal stress control *J_c* and *RRR* degradation.

Pre-stress control Stress of coils, Mechanical Stability...

3

Cabling → Coil winding → HT → VPI → Magnet assembly → Test

Material, Structure, Processing,... J_{c,} RRR, Cu ratio, Filament size...

Stress control, Size control, Electrical insulation J_c and Field quality degradation, Electrical short...

Impregnation quality control: type of epoxy, procedures; Mechanical strength and stability

EM force, Quench protection Training, Strain of coils...

High Field Model Dipole Magnet: 12.47T @ 4.2K

Picture of LPF1-U

A maximum field of 12.47 T was achieved recently for the upgraded magnet of LPF1-U, beyond the dipolar field baseline required in SPPC.

The cross-section of LPF3

Field and flux distribution in coils

Coil layout (yoke 1/8)

Main parameters of LPF3

Current	7580/143 A	Blocks	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7
Main field	16.03 T	Peak field (T)	12.81	10.68	10.82	10.58	10.48	10.38	16.18
	10.05 1	LL ratio (%)	77.66	75.61	77.56	76.15	78.45	77.87	-
Peak field	1 <i>6 7 4</i> T	Blocks	Block 8	Block 9	Block10	Block11	Block12	Block13	Block14
	10.74 1	Peak field (T)	15.98	16.18	15.95	16.64	16.25	16.74	16.56
Harmonics	Max: 5.27 U	b3: -4.4	b5: -5.27	b7: -0.3	b9:-1.62	a2:-1.15	a4: 2.77	a6:-0.95	a8:-0.15

The angle between the flux direction and the tape wide surface has been optimized

The effect of persistent current has also been analyzed and optimized

Harmonics	b3	b5	b7	b9	a2	a4	a6	a8
Unit	-3.2	-7.7	-3.8	-0.9	0.9	-5.5	-2.5	-0.6

Stress distribution in different loading steps

- After assembly at RT: Peak stress on shell- 128 Mpa; On rod- 468 Mpa; On coils- 28.1 Mpa
- Cooling down at 4.2 K: Peak stress on shell- 215 Mpa; On rod- 618 Mpa; On coils- 72.3 Mpa
- Excited to 13 T: Peak stress on shell- 218 Mpa; On rod- 612 Mpa; On coils- 93 Mpa

- A simplified circuit was established in COMSOL
- A 1-dimensional adiabatic model was established
- Varistor and heaters are applied to the quench protection of LPF3

	lagnet	
0.074 H	inductanc	e of magnet
7580 A	operation	current
4.2 K	operation	temperature
13.01 T	max mag	net field
0.01 s	delay time	9

threshold voltage

M

Indcoil

10

Ti

Bm tdelay

Vdet

74[mH]

7580[A]

4.2[K] 13.01[T]

10[ms]

100[mV]

Parameter of heaters

	Thickness of stainless steel /µm	$\begin{array}{c c} \text{Resistanc} & \text{Power} \\ e/\Omega & (W/cm^2) \end{array}$		Charging voltage/V	Resistivity	
coil1	50	2.505	50	389.76	0.5.0.0	
coil2	100	1.698	50	339.6	0.5µ22·m	
coil3	100	1.878	50	375.6		

0.1 V

The calculation indicates that the temperature of hot spot is 237 K and the max voltage is 952 V. Safe.

High Field Model Dipole Magnet: 16-T Fabrication

Nb₃Sn Rutherford cable fabrication

Coil fabrication

Heat treatment test

Inner splice soldering

- Nb₃Sn Rutherford cable has been fabricated for LPF3
- ◆ A dummy coil has been fabricated and heat treated to test the furnace property
- ◆ The inner joints fabrication test and the pre-assembly of LPF3 has been carried out.
- ◆ The coils of LPF3 is under construction and the fabrication of the LPF3 is expected to be competed in July.

Pre-assembly

High Field Model Dipole Magnet: 16-T CCT option

High lights:

- Canted-Cosine-Theta (CCT) technology;
 - Superior field quality;
 - Stress management
 - Developed industrial assembly line;
- ➢ Graded Nb₃Sn Rutherford cables;
- Multiple replaceable coil modules;

The geometry of the 4 module CCT magnet

At 4.2 K, the magnet produces 16 T at 100% load-line with 8.8 kA operating current

High Field Model Dipole Magnet: 16-T CCT option

The CCT magnet has an intrinsic good field quality

High-order harmonics along axis - Bn

High-order harmonics along axis - An

Harmonics: 10^{-4}	b2	a2	b3	a3	b4	a4	b5	a5	b6	аб	b7	a7	b8	a8
Cross section- 2D	0.6259	0.0119	2.9824	-0.0006	0.0537	0.0002	0.5189	0.0002	0.0183	-0.0020	-0.0845	0.0016	-0.0036	0.0009
Integrated-3D	1.5989	0.0101	3.8649	-0.0320	0.3047	0.0802	1.4069	-0.0175	0.0750	-0.3695	0.1163	0.0734	-0.0223	-0.2090

R&D Progress of the IBS Technology

- The **engineering current density** of the long-length IBS still needs a significant improvement, to reach the similar level as ReBCO or Bi-2212 conductors.
- The **materials of stabilizer** should be shifted to copper or any other low-cost metals to realize the low cost of IBS.
- Structure and fabrication methods of IBS and corresponding coils should be further optimized to minimize the J_c degradation at high field and high stress.
- And many other issues like detailed magnetic and mechanical properties study of IBS, quench detection and protection of the IBS coils / magnets and etc.

IBS Magnet R&D: Model Solenoid Pancake Coils

200

160

120

80

40

Current (A)

First IBS Racetrack Coil at 10 T

- Two racetrack coils have been made using 100- m length Iron-Based Superconducting tapes.
- The coils reached 86.7% of critical current of the short sample at 4.2 K and 10 T, and 81.25% of the quench current under self-field,
- with highest compressive stress of 120 MPa.

Comments from SUST reviewers:

- a) ...the new results that can have a strong impact on the conductor and magnet community.
- b) ...demonstrated the great potential of Iron-Based Superconductor in the development of next-generation accelerators.

 I_c of Φ 34mm-17 turns-DPC reached **60 A at 4.2 K and 32 T,** a new breakthrough!

- The 1st IBS racetrack

 \bullet — The 2nd IBS racetrack

10

12

14

 $- I_{C''}$ curve of IBS

 $- \mathbf{v} - I_{c^{+}}$ curve of IBS

Zhang, et al., SuST, . 34 (2021) 035021

Background Field (T)

2

High Field Model Dipole Magnet: HTS Cable R&D

Schematic illustration of the transposed cable and the fabrication steps

The advantages of the designed cable:

- High current-carrying compacity
- Low dynamic loss
- High mechanical stability

In-plane bending performance of the REBCO tapes

High Field Model Dipole Magnet: HTS Cable R&D

REBCO transposed cable

- 10-m cable samples bas been fabricated
- Most of the tapes extracted from the cable showed almost no degradation.
- Cable current reached ~2000 A

IBS transposed cable

The measured V-I curves of the IBS transposed cable

Superconducting Cable R&D for Detector Magnets

- Aluminum stabilized prototype LTS cables successfully developed.
- R&D of doped aluminum materials as high-strength cable stabilizers ongoing.
- The scheme of large-scale HTS detector magnets for CEPC proposed.
- Fabrication of the aluminum-stabilized HTS cable being further optimized and improved.

Development of CCT Dipole Magnets for HL-LHC

China provides 12+1 units CCT twin-aperture dipole magnets for HL-LHC project

5Tm dipole field in the two apertures at 1.9K, To be installed in the ATLAS & CMS interaction regions.

HL-LHC加速器升级中国贡献

Development of CCT Dipole Magnets for HL-LHC

- 000
 Equivalent nominal current: 494A
 Ultimate current: 422A

 400
 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 200
 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 200
 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 200
 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 200
 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 Image: Constraint of the current: 422A

 Image: Constraint of the current: 422A
 - The first set of CCT superconducting magnets MCBRD01 with satisfactory field strength and field quality, has been shipped to Europe in October, 2021.
- The assembly of the 2nd set of HL-LHC CCT superconducting magnets has been finished in Jan, 2022, passed the performance test at IMP in May, being shipped to CERN this month.
- Fabrication of a full size prototype magnet MCBRDP2 was completed in May, 2020. Both apertures reached the ultimate current.

Development of CCT Dipole Magnets for HL-LHC

- 2+10 apertures has been fabricated. Most of them can reach the design current, but with long training history.
- From CB09 an important modification to the design has been adopted, to improve the training performance of the CCT coils
- CB09 & CB12 tested at IHEP shows excellent training performance, demonstrated the expected effect of the design modification.

Training History of the HL-LHC CCT Coils

CB05 and 09 ready for stand-alone test at IHEP

Summary

- High field twin-aperture model dipoles being developed at IHEP, reached 12.47 T at 4.2 K in July 2021, aiming to reach 16 T in 3 years, and 20 T in 10 years.
- Advanced HTS & LTS superconducting cable under development for the application of high field accelerator magnets and detector magnets
- Strong domestic collaboration for the advanced superconductor R&D (IBS & ReBCO & Nb₃Sn): to significantly raise their performance and lower their cost.
- Quench current of the Iron-Based Superconducting double pancake solenoid coil reached 60 A at 32 T, new world record!
- CCT magnet project for HL-LHC going well, successful design upgrade to solve the long-training problem of previous CCT magnets.

Thanks for your attention!