

JUNO-TAO顶部塑闪缪子反符合系统的性能优化

罗光 代表TAO-veto工作组中山大学2022年8月11日

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

目录

JUNO-TAO塑闪缪子反符合系统的介绍
 塑闪反符合系统的缪子模拟
 塑闪反符合系统的本底模拟
 原型的台架测试
 总结与展望

□ JUNO-TAO 塑闪 缪子反符合系统的介绍 □ 塑闪反符合系统的缪子模拟

塑闪反符合系统的本底模拟
 原型的台架测试
 台生运动

光纤

厚度为2cm; 长度为2m。

nPhotons / 缪子在闪烁体中的径迹长度 (mm)

The end : A

单条塑闪

The other end : B

Threshold @ 99%	option2	option3-1	option4
PDE =20%	A>=0.7p.e.	A>=1.1p.e.	A>=1.4p.e.
	B>=0.7p.e.	B>=1.1p.e.	B>=1.4p.e.
PDE =30%	A>=1.2p.e.	A>=1.7p.e.	A>=2.4p.e.
	B>=1.2p.e.	B>=1.7p.e.	B>=2.4p.e.
PDE =40%	A>=1.4p.e.	A>=2.4p.e.	A>=3.1p.e.
	B>=1.4p.e.	B>=2.4p.e.	B>=3.1p.e.

option4在光产额和探测效 率方面优于其他配置。

Ref : Shukla, P. & Sankrith, S. Energy and angular distributions of atmospheric muons at the Earth. arXiv:1606.06907 [astro-ph, physics:hep-ex, physics:hep-ph] (2018).

8/11/2022

Sun Yat-sen University

塑闪反符合系统的缪子探测效率

JUNO-TAO塑闪缪子反符合系统的介绍 塑闪反符合系统的缪子模拟 塑闪反符合系统的本底模拟 原型的台架测试 总结与展望

160 条塑闪 160*8 = 1280 SiPM

Water tank thickness : 1.5 m Rock mass : 288671 kg

每个核模拟 12 million

assuming secular equilibrium

The end : A

单条塑闪

The other end : B

Selection criteria	Deposite E thres	Rate(one PS)
A+B>2p.e.	~0.2 MeV	$4365 \pm 66 \text{ Hz}$
A>1&&B>1p.e	~0.4 MeV	2498 ± 5 0 Hz
A>1.5&&B>1.5p.e	~0.6 MeV	1454 ± 38 Hz
A>2&&B>2p.e	~0.7 MeV	943 ± 31 Hz
A>3&&B>3p.e	~1.0 MeV	638 ± 25 Hz
A>4&&B>4p.e	~1.4 MeV	$369\pm \textbf{19}Hz$
A>5&&B>5p.e	~1.7 MeV	106 ± 10 Hz

假设 PDE 为 35 %

The end : A

单条塑闪

The other end : B

(A>3&&B>3p.e) 代表在单条塑闪下, 99%的缪子探测效率对应的阈值

JUNO-TAO塑闪缪子反符合系统的介绍 塑闪反符合系统的缪子模拟 塑闪反符合系统的本底模拟 原型的台架测试 台结与属词

类似option1样品的初步测量

由于光产额小, SiPM的暗噪声, 环境 本底和缪子信号混淆明显。

option4的实验初步测量

中山大 學 物理学院

SCHOOL OF PHYSICS

SEN UNIVERSITY

option4的实验初步测量

A.信号与本底区分明显。 B.但是实验发现,不同的SiPM的信号存在 着差异,需要进一步在实验中研究。

I. 通过一系列研究,我们提供了JUNO-TAO顶部带有波长位移 光纤塑闪的优化配置,平均光产额约为80p.e.。
II. option4配置下,即使单条塑闪阈值为3 p.e.时,对宇宙缪子 的探测效率仍可以高于99%,单条本底638Hz。
III. 即使单条塑闪的效率低至97%时,4层中选3层作为缪子的 标记探测效率仍将高于99%,单条本底3.2Hz。
IV.不同配置的塑闪已经有了实验数据,并且优化配置后的 option4样品的信号大小的确明显比之前无优化的样品高。

