A First Search for Solar ⁸B Neutrino in the PandaX-4T Experiment using Neutrino–Nucleus Coherent Scattering

Wenbo Ma, PandaX Collaboration

wenboma@sjtu.edu.cn

SHANGHAI JIAO TONG UNIVERSITY

arxiv 2207.04883

Introduction

- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Boron-8 neutrino deposits several keVnr energy in the LXe TPC
- Mimic 6 GeV WIMP (neutrino floor)

Wenbo Ma, PandaX Collaboration

CHEP 2022

PandaX–4T Experiment

- Underground Xe detector located at China JinPing underground Lab
- Best WIMP constrain in 2021, touching low-energy neutrino floor
- Multi-purpose detector for dark matter and other rare events

Wenbo Ma, PandaX Collaboration

at China JinPing underground Lab ching low-energy neutrino floor atter and other rare events

10⁻⁴³ 10⁻⁴⁴ pMSSM11 cm²) 95% C.L PandaX-II 2020 -45 1 10 section **Cross** -46 10 eon 10 10^{2} 10

Touching neutrino floor

CHEP 2022

2022/08/11

WIMP mass (GeV/c^2)

Low-threshold improvement and detection efficiency

- $^{\circ}$ $^{8}\nu$ CEvNS is a sharp cliff
- Various techniques are made for lowering analysis energy threshold \bigcirc
- Efficiency calculated by waveform simulation

CHEP 2022

Signal reconstruction 0 Deadtime 0

- Quality cuts
- BDT in ROI

Data processing

- Low-level detector response is crucial for searching 8B 0
- Discriminate physical events out of noise \bigcirc
- Cuts suppress background \bigcirc
- \bigcirc

Wenbo Ma, PandaX Collaboration

Deadtime Effect

- ~ 3% Bad data files with excessive noise
- 7 live days with excessive micro-discharge
- High-charge period induced by tail of large signals

Wenbo Ma, PandaX Collaboration

Waveform simulation

- S1: sampled from neutron S1
- S2: formed by data-driven single electrons with proper diffusion width 0
- Delay ionization time and amplitude measured from data
- Noise and afterpulse from data photon waveforms and and electron waveforms \bigcirc
- Dark rate and all noise sample from data \bigcirc
- Incorporate with NEST \bigcirc

Wenbo Ma, PandaX Collaboration

CHEP 2022

Light and Charge Yield Puzzle: Low Energy Pleateau or Break–Down?

- Nominal value fitted from WIMP 2021
- Large Ly/Cy uncertainty -> Large event rate uncertainty 30-40%

Ly, Cy, and Uncertainty

Wenbo Ma, PandaX Collaboration

Conservative uncertainty band from NEST v2.3.6 (to cover all low-energy measurements)

Correlation Analysis

Expected 2-Photon Events										
	0.9	-0 .714	0.761	0.807	0.837	0.87	0.903	0.966	1.027	1.102
	0.8	-0 .814	0.905	0.945	0.992	1.011	1.08	1.102	1.166	1.216
	0.7	0 .952	1.044	1.054	1.085	1.134	1.207	1.245	1.261	1.395
an	0.6	1 .067	1.143	1.155	1.206	1.244	1.269	1.341	1.407	1.504
Cy medi	0.5	1 .149	1.279	1.277	1.361	1.377	1.447	1.464	1.533	1.599
	0.4	1 .315	1.376	1.416	1.486	1.508	1.562	1.6	1.682	1.725
	0.3	-1 .398	1.469	1.572	1.621	1.66	1.683	1.756	1.807	1.9
	0.2	1 .561	1.651	1.777	1.795	1.85	1.901	1.931	1.98	2.084
	0.1	-1 .768 I	1.913 	1.963 	2.014	2.077	2.172 I	2.209 I	2.306	2.433 I
	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ly median								0.9	

Expected 3-Photon Events

	0.9	0 .115	0.125	0.132	0.14	0.149	0.162	0.168	0.16	0.188
	0.8	0 .152	0.163	0.163	0.166	0.181	0.187	0.205	0.204	0.215
	0.7	0 .169	0.172	0.191	0.201	0.199	0.217	0.215	0.229	0.238
ian	0.6	0 .205	0.219	0.227	0.234	0.235	0.243	0.248	0.265	0.273
y med	0.5	0 .237	0.243	0.259	0.25	0.27	0.283	0.294	0.271	0.296
Q,	0.4	0 .266	0.28	0.285	0.303	0.291	0.307	0.328	0.319	0.332
	0.3	0 .311	0.321	0.333	0.339	0.328	0.353	0.35	0.377	0.363
	0.2	-0 .361	0.377	0.404	0.405	0.413	0.406	0.404	0.44	0.421
	0.1	.0 .456	0.446 I	0.462	0.488 I	0.51	0.489	0.502	0.51	0.519 I
		0.1	0.2	0.3	0.4 Ly	0.5 v media	0.6 an	0.7	0.8	0.9

CHEP 2022

Negligible Physical Background

Accidental Background Estimation

- Enormous accidental background after lowering energy threshold
- Rate estimation + data-driven simulation \rightarrow shape prediction

 - Accidetnal S1: 6 kHz, are picked up in 1-ms-randomly-selected waveform segment
- Apply quality cuts
- Excellent agreement in sideband

Wenbo Ma, PandaX Collaboration

Accidental S2: ~ 1000 per day, are selected from 0.9-1.5ms event building

 $N_{\rm AC} = \epsilon R_{S1} R_{S2} T_{760\mu s} T_{\rm duration}$

Number of Photons	Physical Events	Accidental Events	Total Prediction	Data
1	9.4	2060.5	2069.9	2043
2	10.1	33.8	43.9	47
3	6.9	2.2	9.1	7

CHEP 2022

Accidental Background Rejection via BDT

Two photon prediction

AC 62.43

Three photon prediction

Wenbo Ma, PandaX Collaboration

BDT: machine learning, boosted decision tree, employed in PandaX-II: arxiv 2204.11175 Input variables: related to charge, width, top-bottom asymmetry and PMT top pattern of S1 and S2s. • Training s/b: $O(10^6)$ 8B event waveform simulation vs $O(10^6)$ data-driven accidental simulation Optimize cut by discovery potential: suppress 98% AC for two photon, 95% AC for three photon

8B 1.42 NR

0.04

8B 0.29

NR 0.02

Unblinding

ROI

	ER+NR+AC	8B	Total prediction	Unblind data	ER+NR+AC	8B	Total prediction	Unblind data
Two Photon	62.57	2.32	64.89	59	1.46	1.42	2.88	1
Three Photon	0.85	0.42	1.27	2	0.04	0.29	0.33	0

Wenbo Ma, PandaX Collaboration

ROI (BDT applied)

CHEP 2022

Statistical Interpretation

2-bin profile likelihood ratio analysis

$$\mathcal{L} = G(\boldsymbol{\eta}) \prod_{i} \frac{\lambda_{i}^{N_{i}}}{N_{i}!} e^{-\lambda_{i}} \cdot G(\boldsymbol{\theta}_{i})$$

Event rate

$$\begin{split} \lambda_{i}^{\nu} = & (1 + f_{i}^{\nu} \eta_{\text{mod}}) \eta_{\text{cut}} \theta_{i,\text{BDT}_{s}} \cdot N_{\nu} \\ & + \eta_{\text{cut}} \cdot \theta_{i,\text{BDT}_{\text{AC}}} \cdot \eta_{\text{AC}} \cdot N_{\text{AC}} + N_{\text{other}}, \\ \lambda_{i}^{\chi} = & (1 + f_{i}^{\chi} \eta_{\text{mod}}) \eta_{\text{cut}} \theta_{i,\text{BDT}_{s}} \cdot N_{\text{wimp}} \\ & + & (1 + f_{i}^{\nu} \eta_{\text{mod}}) \eta_{\text{cut}} \theta_{i,\text{BDT}_{s}} \eta_{\text{flux}} \cdot N_{\nu} \\ & + & \eta_{\text{cut}} \cdot \theta_{i,\text{BDT}_{\text{AC}}} \cdot \eta_{\text{AC}} \cdot N_{\text{AC}} + N_{\text{other}} \end{split}$$

Nuisance parameter conservatively NEST induce 30%

AC induce 30%

BDT induce 25%

	Description	$\begin{array}{c} \text{mean} \\ \text{of } G \end{array}$	std. of G 2-hit 3-hit
$\eta_{ m mod}$	NEST model scaling	0	1
$\eta_{ m AC}$	AC sample scaling	1	0.30
$\parallel \eta_{ m cut}$	Data selection eff. scaling	1	0.04
$\mid \eta_{ m flux} \mid$	⁸ B flux scaling $[5]$	1	0.04
$\mid\mid heta_{i,\mathrm{BDT}_s}\mid$	BDT scaling for signal	1	0.26 0.23
$\left\ \theta_{i,\mathrm{BDT}_{\mathrm{AC}}} \right\ $	BDT scaling for AC	1	0.19 0.18

Wenbo Ma, PandaX Collaboration

Leading constrain on solar 8B flux (via CEvNS) and 3-10 GeV WIMP

SSM prediction XENON1T 2021 This work

This work neutrino floor

Discussion and Summary

Wenbo Ma, PandaX Collaboration

- The eve of the discovery \bigcirc
- Hundreds of events in next-generation detector PandaX-30T \bigcirc
- **Understanding solar metallicity and 8B flux** \bigcirc

For BSM neutrino physics

This result can be cast into various parameters space of \bigcirc neutrino interactions

CHEP 2022