### Dark Matter Search in the CMB



#### IHEP, CAS



高能大会2022 大连, 2022/8/11

### Outline

- Particle Dark Matter Effects on the CMB
- $DM \leftrightarrow CMB$  anisotropies (Ionization)
- DM  $\leftrightarrow$  21cm (Temperature)
- PBH formation  $\leftrightarrow$  CMB ?



update

### CMB & 21cm: capable of EW, TeV scale DM search.



#### The `standard' ionization history



#### DM windows in $x_e$ history

Annihilation: raises the x<sub>e</sub> floor,

Decay: steady rise in x<sub>p</sub>



### Impact from steady (high-energy) injection

- Deposit energy into IGM during the dark age of Universe
- (1) Ionize (a fraction of) the IGM; (2) Heats the IGM
- A small energy budget for a large impact

Possible Observations:On decay lifetime:Continuum Indirect<br/>Search (Fermi-LAT, etc): $\tau > 10^{26}$  s (lines:  $\tau > 10^{28}$  s )IGM ionization<br/>pre-EoR (PLANCK) $\tau > 10^{24}$  sIGM heating<br/>pre-EoR (21cm,projected) $\tau > 10^{26}$  s (existence)<br/>Higher precision cosmic data<br/>Also need more theory work ...

#### Formalism: NP ionization

- Extra amount of free electrons
- > Enhanced CMB scattering  $\rightarrow$  Damping on  $C_l$

$$\frac{dx_e}{dz} = \left(\frac{dx_e}{dz}\right)_{\text{orig}} - \left\{\frac{1}{(1+z)H(z)}(I_{Xi}(z) + I_{X\alpha}(z))\right\} \text{"Deposit Channels"}$$

$$I_{Xi}(z) = f_i(E, z)\frac{dE/dVdt}{n_H(z)E_i} \quad \text{ionization from ground state}$$

$$\frac{dX_e}{dt} = \left\{(1-X_e)\beta - X_e^2 n_b \alpha^{(2)}\right\} \quad I_{X\alpha}(z) = f_\alpha(E, z)(1-C)\frac{dE/dVdt}{n_H(z)E_\alpha} \quad \text{ionization from excited states}$$
SM: H atom ionization and recombination (+ other channels)

#### **Redshift dependence** in injection rate

- Energy deposit rate can build up overtime
- NP processes  $\Leftrightarrow$  (different) injection history

**DM Annihilation**: fast during high z,

$$\frac{dE}{dV\,dt} = \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 p_{\rm ann}(z) \qquad \sim (z+1)^6$$

Late time density clustering boosts the annihilation rate after  $z\sim O(50)$ 

$$\begin{pmatrix} \frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} \end{pmatrix}_{\mathrm{INJ}}^{\mathrm{ann,boosted}} = [1 + B(z)] \left( \frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} \right)_{\mathrm{INJ}}^{\mathrm{ann}}$$

$$B(z) = \frac{\Delta_{\mathrm{c}}\rho_{\mathrm{c}}}{\rho_{\mathrm{DM}}^2} \int_{M_{\mathrm{min}}}^{\infty} MB_{\mathrm{h}}(M) \frac{\mathrm{d}n}{\mathrm{d}M} \mathrm{d}M$$

$$Velocity dependence: requires special treatment: (i) redshift dep. (ii) halo J- factor$$

**DM Decay**: a steady rate, unaffected by structure formation

$$\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} = \Gamma_{\mathrm{DM}} \cdot \rho_{\mathrm{c},0} \Omega_{\mathrm{DM}} (1+z)^3 \quad \sim (z+1)^3$$

#### Xe on CMB C<sub>l</sub>: damping & pol. peak shift





#### Forecast on WIMP lifetime (decay to photons)



### Evaporating PBHs, (low-mass)

PBH's Hawking radiation has a  $dE/dt \sim (1+z)^3$  history

Significant sensitivity in relevant mass range:  $M_{BH} = 10^{14 - 17} g$ 

PLANCK15 constraint: S.Clark., B.Dutta., Y.Gao, Y-Z.Ma, L.E. Strigari, 1612.07738

PLANCK18 limits & forecasts: Extended BH mass distributions, see: J.Cang., Y.Gao., Y-Z. Ma., 2011.12244

| Experiment            | Scaling Factor |
|-----------------------|----------------|
| Experiment            | Scaling Factor |
| Planck                | 1              |
| $\operatorname{COrE}$ | 37             |
| CMB-S4                | 113            |
| PICO                  | 53             |
| LiteBIRD              | 7              |
| Simons Array          | 80             |
|                       |                |



### Spinning & Very low-mass PBHs

 $m_{PBH} = 10^{13} - 10^{17} g$ 

Significant PBH spin and mass evolution  $\rightarrow$  Non-trivial injection and  $x_e$  history

lifetime < AOU: "total" evaporation during dark age



## **N**<sub>eff</sub> limits on PBHs

Future CMB  $N_{\rm eff}$  offers stringent sensitivity on very early PBH formation



Promising forecast for stellar-mass and super-massive PBHs.

J. Cang, Y. Gao, Y.-Z. Ma, appearing soon.

#### **21cm** : *IGM temperature*



Severe x<sub>e</sub> washout by astrophysics. 21cm comes to rescue!  $\rm T_{IGM}\, can$  rise by 10^{2-3} near EoR

## Formalism: $T_{21}$ dependencies...

• 21cm brightness relies on IGM temperature evolution



Extra heating can erase the 21cm signal



The average `brightness temperature'  $\mathbf{Z}$  $T_{21} \approx 0.023 \mathrm{K} \cdot x_{\mathrm{H}_{\mathrm{I}}}(z) \left(\frac{0.15}{\Omega_{\mathrm{m}}} \cdot \frac{1+z}{10}\right)^{\frac{1}{2}} \frac{\Omega_{\mathrm{b}}h}{0.02} \left(1 - \frac{T_{\mathrm{CMB}}}{T_{\mathrm{S}}}\right)$ 

#### WIMP limits: 21cm can do better than CMB pol.

Limit on  $T_{GAS}$  rise:  $\Delta T_{21} < +100$  or +150 mK at z=17

S.Clark, B.Dutta, Y.Gao, Y.-Z.Ma, L.E.Strigari, 18'

18



#### *x<sub>e</sub>, T inhomogeneity impact 21cm power spectrum*



Enhanced x<sub>e</sub> & T inhomogenuity in patchy reionization (on a Mpc grid)

#### 21cm: venture into the nonlinear regime



# backups

### Lagged energy deposition

Injected high-energy particles lose energy by scattering, ionization, excitations, etc...

Not instantaneously deposited into the IGM if particles are energetic (E >> KeV): \* accumulative over earlier injection \* efficiency reduces at later time

Energy "fraction" into ionization (of H)



Numerical calculation

Implemented into **HyRec** codes:

new physics induced excitation, scattering terms, Lyman-α photons, etc.

Also see: Belotsky, Kirillov 2015

#### *Exp. specifications (DM)*

| Experiment                    | $\nu[{ m GHz}]$ | $\omega_{\mathrm{E},\nu}^{-1/2}$ [µK-arcmin] | $\theta_{\rm FWHM}[{\rm arcmin}]$ | $f_{ m sky}[\%]$ | $\ell_{\min}$      | $\ell_{\max}$ |
|-------------------------------|-----------------|----------------------------------------------|-----------------------------------|------------------|--------------------|---------------|
| AdvACTPol [20, 58, 59]        | 28              | 113.1                                        | 7.1                               |                  |                    |               |
|                               | 41              | 99.0                                         | 4.8                               |                  |                    |               |
|                               | $90 \star$      | 11.3                                         | 2.2                               | 50               | $350^{\mathrm{a}}$ | 4000          |
|                               | $150 \star$     | 9.9                                          | 1.4                               |                  |                    |               |
|                               | 230             | 35.4                                         | 0.9                               |                  |                    |               |
| AliCPT [60]                   | 90 <b>*</b>     | 2                                            | 15.4                              | 10               | 30                 | 600           |
|                               | $150\star$      | 2                                            | 9.7                               | 10               | 30                 |               |
|                               | 38              | 39                                           | 90                                |                  |                    |               |
| CLASS $[22]$                  | $93\star$       | 13                                           | 40                                | 70               | 5                  | 200           |
|                               | $148\star$      | 15                                           | 24                                | 10               |                    |               |
|                               | 217             | 43                                           | 18                                |                  |                    |               |
| Simons Array [24, 61]         | $95\star$       | 13.9                                         | 5.2                               |                  | 30                 | 3000          |
|                               | $150\star$      | 11.4                                         | 3.5                               | 65               |                    |               |
|                               | 220             | 30.1                                         | 2.7                               |                  |                    |               |
| Simons Observatory - SAT [25] | 27              | 35.4                                         | 93                                |                  |                    |               |
|                               | 39              | 24                                           | 63                                |                  |                    |               |
|                               | 93 <b>*</b>     | 2.7                                          | 30                                | 10               | 25                 | 1000          |
|                               | $145\star$      | 3                                            | 17                                | 10               |                    |               |
|                               | 225             | 6                                            | 11                                |                  |                    |               |
|                               | 280             | 14.1                                         | 9                                 |                  |                    |               |
| Simons Observatory - LAT [25] | 27              | 73.5                                         | 7.4                               |                  |                    |               |
|                               | 39              | 38.2                                         | 5.1                               |                  | 1000               | 5000          |
|                               | 93 <b>*</b>     | 8.2                                          | 2.2                               | 40               |                    |               |
|                               | $145\star$      | 8.9                                          | 1.4                               | 40               |                    |               |
|                               | 225             | 21.2                                         | 1                                 |                  |                    |               |
|                               | 280             | 52.3                                         | 0.9                               |                  |                    |               |
| SPT-3G [19, 61, 62]           | 95 <b>*</b>     | 5.1                                          | 1                                 |                  |                    |               |
|                               | $150\star$      | 4.7                                          | 1                                 | 6                | 50                 | 5000          |
|                               | 220             | 12.0                                         | 1                                 |                  |                    |               |

<sup>a</sup> AdvACTPol constraints would improve by a factor of 2 if choosing  $\ell_{\min} = 60$ .

### Exp. specifications (PBH)

| Experiment            | $f_{ m sky}$ | $\ell_{\min}$ | $\ell_{\max}$ | ν     | $\delta P$              | $	heta_{ m FWHM}$         |
|-----------------------|--------------|---------------|---------------|-------|-------------------------|---------------------------|
|                       | - 0          |               |               | (GHz) | $(\mu \text{K-arcmin})$ | $(\operatorname{arcmin})$ |
| COrE [45, 46]         | 0.7          | 2             | 3000          | 90    | 7.3                     | 12.1                      |
|                       |              |               |               | 100   | 7.1                     | 10.9                      |
|                       |              |               |               | 115   | 7.0                     | 9.6                       |
|                       |              |               |               | 130   | 5.5                     | 8.5                       |
|                       |              |               |               | 145   | 5.1                     | 7.7                       |
|                       |              |               |               | 160   | 5.2                     | 7.0                       |
| CMB-S4 [56, 57]       | 0.62         | 30            | 3000          | 95    | 2.9                     | 2.2                       |
|                       |              |               |               | 145   | 2.8                     | 1.4                       |
| PICO [48, 49]         | 0.7          | 2             | 4000          | 90    | 2.1                     | 9.5                       |
|                       |              |               |               | 108   | 1.7                     | 7.9                       |
|                       |              |               |               | 129   | 1.5                     | 7.4                       |
|                       |              |               |               | 155   | 1.3                     | 6.2                       |
| LiteBIRD [47]         | 0.7          | 2             | 200           | 89    | 11.7                    | 35                        |
|                       |              |               |               | 100   | 9.2                     | 29                        |
|                       |              |               |               | 119   | 7.6                     | 25                        |
|                       |              |               |               | 140   | 5.9                     | 23                        |
| Simons Array [53, 54] | 0.65         | 30            | 3000          | 95    | 13.9                    | 5.2                       |
|                       |              |               |               | 150   | 11.4                    | 3.5                       |