

Light Meson Spectroscopy at BESIII

Runqiu Ma

(on behalf of the BESIII Collaboration)

Institute of High Energy Physic, Chinese Academy of Sciences

Charmonium decays provides an ideal lab for light hadron physics

- Clean high statistics data samples
- Well defined initial and final states
 - Kinematic constraints
 - $I(J^{PC})$ filter
- "Gluon-rich" processes

 $\Gamma(J/\psi\to\gamma G)>\Gamma(J/\psi\to\gamma H)>\Gamma(J/\psi\to\gamma M)>\Gamma(J/\psi\to\gamma F)$

What's the role of gluonic excitation and how does it connect to the confinement? 2022/8/11 中国物理学会语

World's Largest τ -charm Data Sets in e^+e^- Annihilation

Glueballs

- States composed of only gluons
- Low-lying glueballs with ordinary $J^{PC} \rightarrow mixing$ with $q\bar{q}$ meson
- LQCD predictions
 - $> 0^{++}$ glueball
 - lightest mass : $1.5 \sim 1.7 \text{ GeV/c}^2$
 - $B(J/\psi \to \gamma G_{0^{++}}) = 3.8(9) \times 10^{-3}$
 - > 2⁺⁺ glueball
 - lightest mass : $2.3 \sim 2.4 \text{ GeV}/c^2$
 - $B(J/\psi \to \gamma G_{2^{++}}) = 1.1(2)(1) \times 10^{-2}$

M_{res} (MeV)

Glueballs

> Production properties :

- $B(J/\psi \rightarrow \gamma f_0(1710))$ is compatible with LQCD predictions for a scalar glueball
- Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$

> f₀(1710) largely overlapped with scalar glueball

 \blacktriangleright Decay properties : $G \rightarrow \eta \eta'$ decay is expected to be suppressed

• $SU(3)_f$ symmetry for a pure glueball

 $\Gamma(G \rightarrow \pi \pi: K\overline{K}: \eta \eta: \eta \eta': \eta' \eta') = 3: 4: 1: 0: 1$

• $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$, predicted by Ref. [1]

$J/\psi \rightarrow \gamma \eta \eta'$ provides important information

 $\mathcal{B}(J/\psi \to \gamma f_0(1500)) \sim 0.29 \times 10^{-3},$ $\mathcal{B}(J/\psi \to \gamma f_0(1710)) \sim 2.2 \times 10^{-3},$

[1]P.R.D 92 12,121902 (2015)

Lattice QCD Predictions:

• Formed by quarks, anti-quarks, and excitated gluon field

Low-lying hybrids can have exotic quantum numbers
 0⁺⁻, 1⁻⁺, 2⁺⁻, which is forbidden by qq configuration

 LQCD predicts the mass of lightest exotic J^{PC} = 1⁻⁺ nonet of hybrids is 1.7~2.1 GeV/c²

$Hybrids(1^{-+})$

• Only isovector 1^{-+} candidates observed : $\pi_1(1400), \pi_1(1600), \pi_1(2015)$

	π_1 decay mode	decay channel	Collaboration		π_1 decay mode	decay channel	Collaboration						
π ₁ (1400)	ηπ	$\pi^{-}p \rightarrow \pi^{-}\eta p[28]$ $\pi^{-}p \rightarrow \pi^{0}\eta n[27]$ $\pi^{-}p \rightarrow \pi^{-}\eta p[29]$ $\pi^{-}p \rightarrow \pi^{0}\eta n[30]$	GAMS KEK E852 E852	π1(1600)	η'π	$ \begin{aligned} \pi^{-}Be &\to \eta' \pi^{-} \pi^{0}Be[34] \\ \pi^{-}p &\to \pi^{-}\eta' p[35] \\ \chi_{c1} &\to \eta' \pi^{+} \pi^{-}[36] \end{aligned} $	VES E852 CLEO-c						
		$ \bar{p}n \to \pi^{-}\pi^{0}\eta[31] \bar{p}p \to \pi^{0}\pi^{0}\eta[32] $	CBAR CBAR		$b_1\pi$	$\pi^{-}Be \rightarrow \omega \pi^{-} \pi^{0}Be[34]$ $\bar{p}p \rightarrow \omega \pi^{+} \pi^{-} \pi^{0}[37]$	VES CBAR						
	ρπ	$\bar{p}p \rightarrow 2\pi^+ 2\pi^-[33]$	Obelix		$\pi_1(1600)$		$\pi^- p \to \omega \pi^- \pi^0 p[38]$	E582					
π ₁ (2015)	$f_1\pi$	$\pi^- p \to \omega \pi^- \pi^0 p[38]$						ρπ	$\pi^{-}Pb \rightarrow \pi^{+}\pi^{-}\pi^{-}X[39]$ $\pi^{-}p \rightarrow \pi^{+}\pi^{-}\pi^{-}p[40]$	COMPASS E582	X		_
	$b_1\pi$	$\pi^- p \to p \eta \pi^+ \pi^- \pi^- [41]$	E582		$f_1\pi$	$ \begin{aligned} \pi^- p &\to p \eta \pi^+ \pi^- \pi^- [41] \\ \pi^- A &\to \eta \pi^+ \pi^- \pi^- A [42] \end{aligned} $	E582 VES	>	$I^{G}(J^{P}) = \frac{1}{2}$	(1-)			

- **Isoscalar 1**⁻⁺ is critical to establish the **hybrid nonet**
 - Can be produced in the gluon-rich J/ ψ radiative decays
 - Can decays to $\eta\eta'$ in P-wave ^{[2][3][4]}

Search for Isoscalar 1^{-+} in $J/\psi \rightarrow \gamma \eta \eta'$

2022/8/11

中国物理学会高能物理分会年会,大连

 $I^{G}(J^{PC}) = 1^{-}(1$

S = 0

Observation of An Exotic Isoscalar State $\eta_1(1855) (1^{-+})$ in $J/\psi \rightarrow \gamma \eta \eta'$

10 billion J/ψ arXiv:2202.00621 arXiv:2202.00623

- The η' is reconstructed from $\gamma \pi^+ \pi^- \& \eta \pi^+ \pi^-$, η from $\gamma \gamma$
- Partial wave analysis of $J/\psi \rightarrow \gamma \eta \eta'$ Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X$, $X \rightarrow \eta \eta'$ and $J/\psi \rightarrow$ $\eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$ are constructed using the covariant tensor formalism^[5]
- All kinematically allowed known resonances with 0⁺⁺, $2^{++}, 4^{++}$ ($\eta\eta'$) and $1^{+-}, 1^{--}(\gamma\eta^{(\prime)})$ are considered 1^{-+} in $\eta\eta'$ is also considered (η/η' not identical particle)

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	B.F. ($\times 10^{-5}$)	Sig.
	$f_0(1500)$	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312{\pm}7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855 {\pm} 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$\overline{J/\psi \to \eta' X \to \gamma \eta \eta'}$	$h_1(1415)$	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

significance of all other additional resonances are less than 3 σ

✓ An isoscalar resonance with exotic $I^{PC} = 1^{-+}$

 \succ consistent with LQCD calculation for the 1⁻⁺ hybrid (1.7~2.1 GeV/c²) 中国物理学会高能物理分会年会,大连

2022/8/11

8

[5] Eur. Phys. J. A 16, 537 (2003)

Observation of An Exotic Isoscalar State $\eta_1(1855) (1^{-+})$ in $J/\psi \rightarrow \gamma \eta \eta'$

Further Checks on the 1^{-+} State $\eta_1(1855)$

Angular distribution as a function of $M(\eta\eta')$ can be expressed **modelindependently** in terms of Legendre polynomial moments

$$\left\langle Y_0^0 \right\rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta_\eta^i)$$

Neglecting resonance contributions in the $\gamma\eta$ and $\gamma\eta'$ subsystems, the ٠ moments are related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in $\eta\eta'$ by:

$$\sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 + D^2$$

$$\sqrt{4\pi} \langle Y_1^0 \rangle = 2SPcos\phi_P + 4PDcos(\phi_P - \phi_D)$$

$$\overline{\langle Y_1^0 \rangle} = 0 \text{ without P-wave contribution}$$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}}P^2 + \frac{2\sqrt{5}}{7}D^2 + 2SDcos\phi_D$$

$$\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{5}\sqrt{\frac{15}{7}}PDcos(\phi_P - \phi_D)$$

$$\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{6}{7}D^2$$

• Narrow structure in $\langle Y_1^0 \rangle$

2022/8/11

- \blacktriangleright Cannot be described by resonances in $\gamma \eta(\eta')$
- $\eta_1(1855) \rightarrow \eta \eta'$ needed

Data – Sideband PWA fit projection (baseline fit) Alternative fit without η_1

Weight sum/(10 MeV/c²)

100

1.5

2

2.5

(Y°)

2.5

2.5

(Y⁰

3

M(ηη')(GeV/c²)

Further Checks on the 1^{-+} State $\eta_1(1855)$

- Change J^{PC} of η₁(1855): log-likelihood ↓235
 > J^{PC} prefer 1⁻⁺
- Remove **BW phase motion** of $\eta_1(1855)$: log-likelihood $\downarrow 43$
 - Resonance structure needed
- Assuming $\eta_1(1855)$ as additional resonance, evaluate its significance with various masses and widths
 - ➢ Significant 1^{−+} contribution around 1.8 GeV/c² needed
- Systematic uncertainties are studied, and significance of $\eta_1(1855)$ remains larger than 19σ in all cases

significance of $\eta_1(1855)$ with various masses and widths

Discussions about $f_0(1500) \& f_0(1710)$

• Significant $f_0(1500)$

 $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$ consistent with PDG

• Absence of $f_0(1710)$

$$\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 1.61 \times 10^{-3} @90\% C.L$$

- > Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar (0^{++}) glueball
 - Scalar glueball expected to be suppressed in $\eta\eta'$: B(G $\rightarrow \eta\eta'$)/B(G $\rightarrow \pi\pi$) < 0.04

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV})$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010\pm6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6 <i>σ</i>
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65 \pm 10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855{\pm}9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05{}^{+0.12}_{-0.02}$	8 .7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-		-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2 <i>σ</i>
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

Partial Wave Analysis of $J/\psi \to \gamma \eta' \eta'$

- Observation of the f₀(2480), f₀(2020), f₀(2330) and f₂(2340) decays to η'η'
 ➤ A new 0⁺⁺ state f₀(2480)
- After considering the phase-space factor : $\frac{\Gamma(f_0(2020) \rightarrow \eta \eta')}{\Gamma(f_0(2020) \rightarrow \eta' \eta')} = 0.0148$
 - > Indicates that $f_0(2020)$ is a **flavor singlet**^[5]
- $B(J/\psi \rightarrow \gamma f_2(2340)) \sim 3.0 \times 10^{-4}$ (LQCD : $B(J/\psi \rightarrow \gamma G_{2^{++}}) = 1.1(2)(1) \times 10^{-2}$) > Need more measurment

10 billion *J/ψ* PRD **105**,072002 (2022)

Resonance	$M(MeV/c^2)$	$\Gamma(MeV)$	B.F.	Significance (o)
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$	≫25
$f_0(2330)$	$2312 \pm 2^{+10}_{-0}$	$134 \pm 5^{+30}_{-9}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$	16.3
$f_0(2480)$	$2470 \pm 4^{+4}_{-6}$	$75 \pm 9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) \times 10^{-7}$	5.2
$h_1(1415)$	$1384 \pm 6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) \times 10^{-7}$	5.3
$f_2(2340)$	$2346 \pm 8^{+22}_{-6}$	$332 \pm 14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) \times 10^{-6}$	16.1
0 ⁺⁺ PHSP			$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$	15.7

[5] Phys. Lett. B 826, 136906 (2022)

A New State X(2600) Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

• X(1835) was first observed and confirmed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'^{[6][7]}$, with $J^{PC} = 0^{-+[8]}$, and an anomalous line shape at $p\bar{p}$ threshold^[9]

• X(2120), X(2370) also observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'^{[7]}$

• With the 10 billon J/ ψ events, a **new state X(2600)** in M($\eta'\pi^{+}\pi^{-}$) is observed, which is correlated to a structure @1.5 GeV/c² in M($\pi^{+}\pi^{-}$)

[6] PRL 95, 262001 (2005) 中国物理学会高能物理分会年我] PRL 迎6, 072002 (2011) [8] PRL 115, 091803 (2015)

A New State X(2600) Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

• To study X(2600) parameters, a simultaneous fit to $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ is performed /(10 MeV/c²) 3000 500 500 500 (a) (b) • The structure in $M(\pi^+\pi^-)$ well described with the interference between $f_0(1500)$ and X(1540)Events 1000 500 200 Mass (MeV/c^2) @ > 20o Width (MeV) 2.3 2.6 2.7 2.8 M_{11'π⁺π}(GeV/c²) 2.5 ^{2.6} 2.7 2.8 M_{n'π⁺π}(GeV/c²) 2.5 2.3 2.4 2.4 $\mathbf{X}(\mathbf{2600})$ $1492.5 \pm 3.6^{+2.4}_{-20.5}$ $107 \pm 9^{+21}_{-7}$ $f_0(1500)$ $I^{PC} = 0^{-+} or 2^{--}$ $1540.2 \pm 7.0^{+36.3}_{-6.1}$ $157 \pm 19^{+11}_{-77}$ G 4000 X(1540)0/1800 1600 1400 (C (d New 3500 $2618.3 \pm 2.0^{+16.3}_{-1.4}$ $195 \pm 5^{+26}_{-17}$ X(2600)Events / (10 1200 400 400 400 2500 Events / 2000 1500 1000 Case $f_0(1500)$ X(1540)1000 500 200 24585 ± 1689 21203 ± 1456 Events 1.2 1.3 1.4 1.5 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9 BF $(\times 10^{-5})$ 3.09 $\pm 0.21^{+1.14}_{-0.77}$ 2.69 $\pm 0.19^{+0.38}_{-1.21}$ $M_{\pi^+\pi^-}(\text{GeV}/c^2)$ $M_{\pi^+\pi^-}(\text{GeV}/c^2)$

reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$ (right)

Observation of X(1835), X(2120) and X(2370) in J/ ψ EM Dalitz Decays J/ $\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

• Confirmation of X(1835), X(2120), X(2370) previously observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Observation of X(1835), X(2120) and X(2370) in J/\psi EM Dalitz Decays $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

• Measurement of the Transition Form Factor of $J/\psi \rightarrow e^+e^-X(1835)$ > Gives additional information of the internal structure of X(1835)

$$\frac{d\Gamma\left(J/\psi \to X(1835)e^+e^-\right)}{dq^2\Gamma(J/\psi \to X(1835)\gamma)} = \left|F\left(q^2\right)\right|^2 \times \left[\text{QED}\left(q^2\right)\right]$$
$$F(q^2) = \frac{1}{1-q^2/\Lambda^2}$$

$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \text{ GeV/c}^2$$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$ (right)

X(2370) is previously observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ ^[10] and $J/\psi \rightarrow \gamma K \overline{K} \eta'$ ^[11], and possibly a pseudoscalar glueball candidate

- No evident signal of X(2370) in $J/\psi \to \gamma \eta \eta \eta'$ B($J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta'$) < 9.2×10⁻⁶ (@ 90% C. L.)
- No contradiction with prediction of the branching ratio for pseudoscalar glueball^[12]
- Observation of $\eta_c \rightarrow \eta \eta \eta'$

 $B(J/\psi \rightarrow \gamma \eta_c \rightarrow \gamma \eta \eta \eta') = 4.86 \pm 0.62 (stat.\,) \pm 0.45 (sys.\,)$

[10] PRL 106, 072002 (2011) [11] Eur. Phys.J.C 80,746 (2020) [12] PRD 87, 054036 (2013)

Summary

- $J/\psi \to \gamma \eta \eta'$
 - Observation of exotic isoscalar $1^{-+} \eta_1(1855)$
 - > Hybrid? Molecule? Tetraquark? ... needs further study -
 - Support $f_0(1710)$ overlap with scalar glueball
- $J/\psi \to \gamma \eta' \eta'$
 - $f_0(2020), f_0(2330), f_2(2340)$ and a **new state** $f_0(2480)$ observed
 - $f_0(2020)$ observed to be a flavor singlet
- New X(2600) observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ in addition to X(1835), X(2120), X(2370)
- Confirmation of X(1835), X(2120), X(2370) in $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$ and measurement of Transition form factor of $J/\psi \rightarrow e^+e^-X(1835)$
- Upper limit for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$ and observation of $\eta_c \rightarrow \eta \eta \eta'$
- With the world's largest charmonium data sets, BESIII provides great opportunities to map out light meson spectroscopy and study QCD exotics.

- Other partners in hybrid nonet: $\pi_1(b_1\pi, f_1\pi, ...)$ and $K_1(K_1(1270)\pi, ...)$
- **Production & decay** of $\eta_1(1855)$
 - $J/\psi(\psi') \rightarrow VX$, ...
 - $X \rightarrow a_1 \pi, K_1 K, f_1 \eta, \dots$

Thank you for your attention!

Backup slide

Amplitude analysis of $J/\psi \rightarrow \gamma K_S K_S$

1.3 billion J/ψ Phys. Rev. D 98, 072003(2018)

Resonance	$M \; ({ m MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
$K^{*}(892)$	896	895.81 ± 0.19	48	$47.4 {\pm} 0.6$	$(6.28^{+0.16}_{-0.17}, 0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	$90{\pm}20$	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350 \pm 9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08}_{-0.07}^{+0.08}_{-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16}_{-0.16}^{+0.18}_{-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146 \pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03}_{-0.02}{}^{+0.31}_{-0.10})\times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870 \pm 7^{+2}_{-3}$	()	$146 \pm 14^{+7}_{-15}$	-	$(1.11^{+0.06}_{-0.06}^{+0.19}_{-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184\pm5^{+4}_{-2}$	2189 ± 13	$364 \pm 9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08}_{-0.06}^{+0.17}_{-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411{\pm}10{\pm}7$	-	$349 \pm 18^{+23}_{-1}$	-	$(4.95^{+0.21}_{-0.21}{}^{+0.66}_{-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08}_{-0.09}, 0.20}_{-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75 \pm 1 \pm 1$	73^{+6}_{-5}	$(7.99^{+0.03}_{-0.04}^{+0.69}_{-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345^{+50}_{-40}	$507 \pm 37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34}_{-0.40}) \times 10^{-5}$	26σ
0^{++} PHSP	-	-	-	-	$(1.85^{+0.05}_{-0.05}{}^{+0.68}_{-0.26}) \times 10^{-5}$	26σ
2^{++} PHSP	-	-	-	-	$(5.73^{+0.99}_{-1.00}{}^{+4.18}_{-3.74}) \times 10^{-5}$	13σ

MD analysis is well consist with MI analysis

Further Checks on the 1^{-+} State $\eta_1(1855)$

Angular distribution in different $M(\eta \eta')$ region

✓ A clear asymmetry largely due to $\eta_1(1870)$ signal

中国物理学会高能物理分会年会,大连

Significance of additional resonances

Decay mode	Resonance	J^{PC}	$\Delta \ln \ell$	Adof	Sig	:	Decay mode	Resonance	J^{PC}	$\Delta \ln \mathcal{L}$	Δdo	f Sig.
	$f_{-}(1525)$	$\frac{0}{2^{++}}$	6.2	<u><u> </u></u>	$\frac{51g}{10\pi}$		Deeuy moue	$\rho(1450)$	$1^{}$	3.4	2	2.1σ
	$f_2(1020)$	$\frac{2}{2++}$	0.5	6	1.90			$\rho(1700)$	$1^{}$	0.8	2	0.7σ
	$J_2(1810)$	\mathbf{Z}^{++}	2.7	0	0.7σ	$ \begin{cases} 1\sigma \\ 1\sigma \\ 1\sigma \end{cases} \qquad J/\psi \to \eta' X \to \gamma \eta \eta' $	$\rho(1900)$	$1^{}$	0.0	2	0σ	
	$f_0(1710)$	0 ' '	3.4	2	2.1σ		$\omega(1420)$	$1^{}$	5.3	2	2.8σ	
	$f_2(1910)$	2^{++}	3.9	6	1.1σ		$\omega(1650)$	$1^{}$	2.6	2	1.7σ	
	$f_2(1950)$	2^{++}	2.6	6	0.6σ			$\phi(1680)$	$1^{}$	4.3	2	2.5σ
	$f_0(2100)$	0^{++}	1.1	2	1.1σ			$\phi(2170)$	$1^{}$	0.4	2	0.4σ
	$f_2(2150)$	2^{++}	2.3	6	0.5σ			$h_1(1415)$	1^{+-}	1.3	4	0.5σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	0^{++}	0.4	2	0.4σ			$h_1(1595)$	1^{+-}	8.1	4	2.9σ
, , , , , , , , , , , , , , , , , , , ,	$f_2(2220)$	2^{++}	8.6	6	2.6σ			$\rho(1450)$	$1^{}$	1.3	2	1.1σ
	$f_2(2300)$	2^{++}	7.2	6	2.2σ			$\rho(1700)$	$1^{}$	3.1	2	2.0σ
	$f_4(2300)$	4^{++}	2.3	6	0.5σ		$J/\psi \to \eta X \to \gamma \eta \eta'$	ho(1900)	$1^{}$	6.1	2	3.0σ
	$f_0(2330)$	0^{++}	1.5	2	1.2σ			$\omega(1420)$	$1^{}$	2.5	2	1.7σ
	$f_0(2340)$	2^{++}	63	6	1.20			$\omega(1650)$	$1^{}$	0.8	2	0.7σ
	$f_{2}(2040)$	0^{++}	0.5	2	1.50			$\phi(1680)$	$1^{}$	2.1	2	1.5σ
	$\int_{0}(2102)[01]$	0	0.1	2	0.20			$\phi(2170)$	$1^{}$	0.1	2	0.1σ
	$J_2(2240)[61]$	2	2.9	0	0.7σ							
	$f_2(2293)[61]$	2^{++}	4.1	6	1.2σ							
	$f_4(2283)[61]$	4^{++}	0.9	6	0.1σ							