Next-Generation Scintillation Materials: Low-Dimensional Perovskite-like Cu(I) halides

Yuntao Wu (吴云涛)

Since 1928 Principle of a scintillator Shanghai Institute of Ceramics Chinese Academy of Sciences

Spectral transformer

energy above a few keV

Principle of a scintillator

CONVERSION -interaction of a

Chinese Academy of Sciences

国科学院上海硅酸盐研究所

Shanghai Institute of Ceramics

high-energy photon with a material through photoeffect, Compton effect, pair production, appearance of electron-hole pairs and their ther-malization

TRANSPORT - diffusion of electron-hole pairs (excitons) through the material, possible (repeated) trapping at defects, nonradiative recombination

LUMINESCENCE -trapping of charge carriers at the luminescence centre and their radiative recombination

CONVERSION

HE photon interaction

Applications of scintillators

中国科学院上海硅酸盐研究所 Shanghai Institute of Ceramics Chinese Academy of Sciences

Computed tomography

Remote detection

Hazards, disasters, geology

SICCAS Application requirements

中国科学院上海硅酸盐研究所

Shanghai Institute of Ceramics Chinese Academy of Sciences

Application	High light yield	High energy resolution	Fast decay time	High density	High Z	Low afterglow
High energy Physics			\checkmark	\checkmark		
Nuclear physics	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Homeland security	\checkmark	\checkmark				
Molecular Imaging (PET)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Molecular Imaging (CT)	\checkmark					\checkmark
Space Physics	\checkmark			\checkmark		

High yield and high resolution: Metal halides

Main issues of existed high-performance metal halide scintillators:

Shanghai Institute of Ceramics Chinese Academy of Sciences

SICCAS

Low-dimensional perovskites with self-trapped exciton emission

Molecular Level Low Dimensional Organometal Halide Hybrids

0D perovskite: Cs₄EuBr₆ (78,000 ph/MeV)

Y. Wu* et al. J. Mater. Chem. C, 2018, 6, 6647.

1D perovskite Rb₂CuBr₃ (PLQY≈1; 90,000 ph/MeV)

J. Tang*, et al. Adv. Mater. 2019, 1904711.

1D perovskite: Rb₂CuCl₃ (PLQY≈1; 16,600 ph/MeV)

J. Tang*, et al. J. Phys. Chem. Lett. 2020, 11, 1873.

Shanghai Institute of Ceramics Chinese Academy of Sciences

ID perovskite CsCu₂I₃

Orthorhombic

- Low melting point: 371 °C
- Non-hygroscopic

Wu,* et al. ACS Applied Materials and Interfaces 13 (2021) 12198-12202.

SICCAS

Luminescence properties of CsCu₂l₃

The activation energy of thermal quenching (E_a) :

 $1/\tau_{mea} = 1/\tau_{rad} + wexp[-E_a/k_BT]$ τ_{mea} is the decay time at temperature (T), τ_{rad} is the decay time at 77 K, w is the frequency factor, and k_B is the Boltzmann constant. The derived parameters are $w = 7.6 \times 10^{12}$ s⁻¹ and E_a = 340 ± 12 meV.

Quenching is due to classical thermal quenching to ground state & exciton ionization (disintegration). The latter explains slower tails in PL decays at high T.

PL decays at low temperatures (b) Temperature dependence of PL spectra integrals and dominant decay time (c)

Scintillation properties of CsCu₂l₃

- High density of 5.01 g/cm³, Z_{eff} of 50.6
- Large Stokes shift of 236 nm (1.54 eV).
- Scintillation yield 16,000 phot/MeV with a principal decay time of 97 ns.
- *Scintillation yield is lowered by low
 QE of exciton emission due to thermal quenching and/or disintegration (exciton engineering possible?).
- An increase of its thermal stability could increase its scintillation yield up to one order of magnitude, i.e. well beyond 100,000 photons/MeV.
- Extremely low afterglow level of 0.008% at 10 ms - three orders of magnitude lower than in CsI:TI scintillator.

Shanghai Institute of Ceramics Chinese Academy of Sciences

OD perovskite Cs₃Cu₂I₅, Cs₃Cu₂I₅:TI

Wu,* Advanced Optical Materials 10 (2022) 2200304 1-8. Wu,* Advanced Optical Materials 9 (2021) 2100460 1-7. Wu,* Physica Status Solidi (RRL) 15 (2021) 2100422 1-4. Wu,* Physica Status Solidi (RRL) 14 (2020) 2000374 1-4.

Shanghai Institute of Ceramics Chinese Academy of Sciences

Luminescence properties of Cs₃Cu₂I₅ and Cs₃Cu₂I₅:TI

Since 1928

SICCAS

> PLQY increases from 70% to 79.2%

Chinese Academy of Sciences

Temperature dependent luminescence of undoped and TI-doped Cs₃Cu₂I₅

- STE bonding energy : 364.5 meV
- Onset of thermal quenching around RT

- Thermal activation energy of Tlrelated emission : 302.2 meV
- Onset of thermal quenching around RT

Shanghai Institute of Ceramics Chinese Academy of Sciences

SICCAS

Excellent X-ray detection performance of undoped and TI doped Cs₃Cu₂I₅

中国科学院上海硅酸盐研究所 Shanghai Institute of Ceramics Chinese Academy of Sciences

SICCAS

Excellent gamma-ray detection performance of undoped and TI doped Cs₃Cu₂I₅

- Light yield : 87,000 ph/MeV (comparable with LaBr₃:Ce)
- Energy resolution : 3.4% @ 662
 keV (comparable with CeBr₃)
- Scintillation decay: 690 ns (88%), 1669 ns (12%)

中国科学院上海硅酸盐研究所 Shanghai Institute of Ceramics

Chinese Academy of Sciences

SICCAS

OD perovskite Cs₃Cu₂I₅:In

Shanghai Institute of Ceramics Chinese Academy of Sciences

SICCAS

> Summary

Composition	Hygroscopicity	Density (g/cm³)	Light yield (ph/MeV)	Energy resolution 662 keV(%)	Scintillation decay (ns)	Afterglow 10 ms (%)	X-ray detection limit (nGy/s)
$Cs_3Cu_2I_5$	No	4.51	29,000	3.4	51 (4%) 967 (96%)	0.015	103.6
$Cs_3Cu_2I_5$:In	No	4.51	53,000	6-7	556 3746	1	96.2
Cs₃Cu₂l₅:Tl	Νο	4.51	87,000	3.4	690 (88%) 1669 (12%)	0.17	66.3
CeBr ₃	Strong	5.22	68,000	3.7-4.3	17		
Nal:Tl	Strong	3.67	45,000	7.1	230		

专利: PCT/CN2021/099440、202210177453.6、202210079484.8、202110446361.9、202010573954.7

Can Cs-Cu-I materials compete with classical Nal:TI and CsI:TI scintillators?

- Comparable price of raw materials and preparation process. Comparable density and Z_{eff}. Growth of large crystals is in question, not studied yet
- □ Not hygroscopic
- Much lower afterglow enabling the use in CT and fast framing applications
- Lower band gap (due to Cu energy levels which decrease CB bottom edge) lowers the energy to create an electron-hole pair
- TI-doping feasible, in Cs₃Cu₂I₅ host reported light yield above 80 000 phot/MeV with afterglow still at least one order lower compared to CsI:TI
- Ternary compound provides broader space for electronic band structure engineering, i.e. manipulation with the intrinsic defect/trap states

SICCAS

Grand Challenges for X-ray and gamma-ray detection

Metal halides

Light yield >100,000 ph/MeV

Energy resolution @662keV ~ 1%?

Novel low-dimensional perovskite halides could be promising candidates toward ultra high LY and ER.

Shanghai Institute of Ceramics Chinese Academy of Sciences

Low-dimensional Cu(I) halides

Significant potential in detecting and imaging of X-ray, γ-ray, neutron, proton...

Shanghai Institute of Ceramics Chinese Academy of Sciences

Acknowledgment

THANK YOU ANY QUESTIONS?