# Lattice calculation of the $\eta_c \eta_c$ and $J/\psi J/\psi$ scattering length

#### 孟雨(郑州大学)

中国物理学会高能物理分会第十三届全国粒子物理学术会议 2022.08.08, 辽宁师范大学 (大连)

主要合作者: 冯 旭、郭奉坤、刘 川

# $J/\psi$ -pair mass spectrum from experiments



- In 2020, LHCb first observed a narrow structure X(6900) in the di- $J/\psi$  spectrum Sci.Bull.65 (2020) 23
- In 2022, CMS found 3 significxant structures, named as X(6600),X(6900) and X(7200) ICHEP(2022)
- In 2022, ATLAS observed X(6900) in di- $J/\psi$  channel and X(6900),X(7200) in  $J/\psi + \psi(2S)$  channel ICHEP(2022)

Is there compact bound state below di-heavy-quarkonium threshold ?

- No · · ·
- Yes • •

### What is the nature of X(6900)?

- Tetraquark
- Gluonic tetracharm
- Coupled channel effect

What is the less certain? relatively certain? very certain?

# Role of lattice QCD

. . .

- X(6900): very challenging for current lattice QCD less certain
  - Unknown internal structure
  - Very dense energy levels
  - Coupled-channel and many-body effect
- Basic information of di-charmonium scattering(Lattice QCD)  $\rightarrow$  inputs for phenomenological studies
  - Constrain various phenomenological models
  - Improve the predictive power of phenomenology

less certain  $\rightarrow$  relatively certain

```
• Experiments+phenomenology+lattice QCD \rightarrow very certain
```

# Role of lattice QCD

. . .

- X(6900): very challenging for current lattice QCD less certain
  - Unknown internal structure
  - Very dense energy levels
  - Coupled-channel and many-body effect
- Basic information of di-charmonium scattering(Lattice QCD)  $\rightarrow$  inputs for phenomenological studies
  - Constrain various phenomenological models
  - Improve the predictive power of phenomenology

less certain  $\rightarrow$  relatively certain

• Experiments+phenomenology+lattice QCD  $\rightarrow$  very certain

Target :  $0^+$   $\eta_c \eta_c$  and  $2^+$   $J/\psi J/\psi$  scattering lengths

# Lattice QCD

- K.G.Wilson, PRD 10, 2445(1974)
- Idea: put QCD on 4-d lattice
  - Quark field  $\rightarrow$  site
  - $\bullet \ \ \mathsf{Gauge filed} \to \mathsf{link}$



格点量子色动力学在中国 [J]. 现代物理知识,2020,32(01):36-44.

- "格点场论既是世界观 (非微扰的定义) 又是方法论 (非微扰的计算)"
   一 刘川,《格点量子色动力学导论》
  - 世界观  $\Rightarrow$  Non-perturbative definition of QCD, natural ultraviolet and infrared truncation
  - 方法论  $\Rightarrow$  Non-perturbative calculation of QCD, Monte-Carlo simulation

### Lattice method

• Method: Lüscher finite volume formula

$$\delta E^{\Gamma} = -\frac{4\pi a^{\Gamma}}{mL^3} \left[ 1 + c_1 \frac{a^{\Gamma}}{L} + c_2 \left( \frac{a^{\Gamma}}{L} \right)^2 + \mathcal{O}(L^{-3}) \right], \Gamma = A_1, E, T_2$$

• Single-particle operator:  $\mathcal{P}(t) = \bar{c}\gamma_5 c(t), \mathcal{V}_i(t) = \bar{c}\gamma_i c(t)$ 

Two-particle operator

$$\mathcal{O}^{A_1}(t) = \mathcal{P}(t)\mathcal{P}(t)$$
  

$$\mathcal{O}^E(t) = \left\{ \frac{1}{\sqrt{2}} \left[ \mathcal{V}_1(t)\mathcal{V}_1(t) - \mathcal{V}_2(t)\mathcal{V}_2(t) \right], \\ \frac{1}{\sqrt{2}} \left[ \mathcal{V}_2(t)\mathcal{V}_2(t) - \mathcal{V}_3(t)\mathcal{V}_3(t) \right] \right\}$$
  

$$\mathcal{O}^{T_2}(t) = \left\{ \mathcal{V}_2(t)\mathcal{V}_3(t), \mathcal{V}_3(t)\mathcal{V}_1(t), \mathcal{V}_1(t)\mathcal{V}_2(t) \right\}$$

F.R.López, A.Rusetsky and C.Urbach, PRD98, 014503(2018)

#### • Two-point function

$$C_{\eta_c}^{(2)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{P}(t+t_s) \mathcal{P}^{\dagger}(t_s) \rangle$$
$$C_{J/\psi}^{(2)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{V}_i(t+t_s) \mathcal{V}_i^{\dagger}(t_s) \rangle$$

• Four-point function

$$C_{\Gamma}^{(4)}(t) = \frac{1}{T} \sum_{t_s} \langle \mathcal{O}^{\Gamma}(t+t_s) \left( \mathcal{O}^{\Gamma}(t_s) \right)^{\dagger} \rangle$$

• Ratio

$$\begin{aligned} R^{\Gamma}(t) &= \frac{C_{\Gamma}^{(4)}(t) - C_{\Gamma}^{(4)}(t+1)}{(C_{h}^{(2)}(t))^{2} - (C_{h}^{(2)}(t+1))^{2}} \\ &\to A_{R}[\cosh(\delta E^{\Gamma}t') + \sinh(\delta E^{\Gamma}t') \coth(2m_{h}t')], \ t' = t + 1/2 - T/2 \end{aligned}$$

### Wick contraction



• Type-R and type-V are supposed to be highly suppressed

| Ens | a(fm)      | $V/a^4$          | $a\mu_{sea}$ | $N_{\rm conf} \times T_s$ | $m_{\pi}(\text{MeV})$ |
|-----|------------|------------------|--------------|---------------------------|-----------------------|
| a98 | 0.098(3)   | $24^3 \times 48$ | 0.0060       | $236 \times 48$           | 365                   |
| a85 | 0.085(2)   | $24^3 \times 48$ | 0.0040       | $200 \times 48$           | 315                   |
| a67 | 0.0667(20) | $32^3 \times 64$ | 0.0030       | $200 \times 64$           | 300                   |

- $N_f = 2$  twisted-mass guage configuration
- Dimensionless quantity  $m_{J/\psi}a^{\Gamma}$  in the continuous limit
- Smeared stochastic  $Z_4$ -noise for the propagator
- Charm quark mass is tuned by physical  $J/\psi$  mass



• Asymptotic behavior:  $T \gg t, \ \delta E/2m_{\bar{c}c} \ll 1$ 

$$R^{\Gamma}(t) \rightarrow e^{-\delta E^{\Gamma} \cdot t}$$

• It indicates  $\delta E>0$ 

## Preliminary results



• S-wave scattering length

$$a_{\eta_c\eta_c}^{0^+} = -0.104(09) \text{ fm}, \ a_{J/\psi J/\psi}^{2^+} = -0.165(16) \text{ fm}$$

• No evidence of  $\eta_c \eta_c$  and  $J/\psi J/\psi$  with mass below the noninteracting thresholds in the 0<sup>+</sup> and 2<sup>+</sup> channels  $[\delta E > 0]$ 

### Individual Wick contraction: $A_1$ , a67

$$R(t) = A[\cosh(\delta E \cdot t') + \sinh(\delta E \cdot t') \coth(2mt')], \quad t' = t + 1/2 - T/2$$



•  $\delta E < 0$  for both Wick contractions,  $\delta E > 0$  for the sum • No physical interpretation for individual Wick contraction

- *bbbb* C. Hughes, E. Eichten and C.T.H. Davies, PRD**97**, 054505(2018)
  - (i) 2+1+1 flavors from MILC collaboration,  $a \sim [0.06, 0.12] \mathrm{fm}$
  - (ii) No any state below the threshold in any channel  $(0^{++}, 1^{+-}, 2^{++})$
  - (iii) Mass below the threshold for individual Wick contraction, above after the sum  $\rightarrow$  individuals misinterpreted  $\cdots$

- $\Omega_{ccc}\Omega_{ccc}$  PKU&HALQCD,PRL**127**,072003(2021)
  - (i) 2+1 flavor O(a)-improved Wilson action,  $a \sim 0.085 {\rm fm}$
  - (ii) V(r) replusive at short range and attractive at midrange( ${}^1S_0$ )
  - (iii) It supports a loosely bound state  $[\delta E < 0]$

## Conclusion

- We present first-principle calculation on the scattering length of  $\eta_c \eta_c$ and  $J/\psi J/\psi$  in  $0^+$  and  $2^+$  channels
- $\bullet$  No evidence of  $\eta_c\eta_c$  and  $J/\psi J/\psi$  with mass below the noninteracting thresholds in both channels
- We observe sizeable discretization effect, weak repulsive interaction in  $0^+~\eta_c\eta_c$  and  $2^+~J/\psi J/\psi$  systems
- The scattering lengths are obtained as

$$a_{\eta_c\eta_c}^{0^+} = -0.104(09) \text{ fm}, \ a_{J/\psi J/\psi}^{2^+} = -0.165(16) \text{ fm}$$

