

Parton splitting scales of reclustered large-radius jets in high-energy nuclear collisions

Meng-Quan Yang

Collaborated with Shan-Liang Zhang, Ben-Wei Zhang

09/08/2022

Outline

- Motivation
- pp baseline
- LBT model
- Results
- Summaryg

Motivation

Meng-Quan Yang (CCNU)

large-radius jets

Phys. Lett. B 790 (2019) 108

Phys. Lett. B 790 (2019) 108

Phys. Rev. Lett. 114 (2015) 072302

Definition of large-radius jets

Definition of large-radius jets

Pythia8 calculations provide well agreement with experimental data.

LBT model

$$p_{a} \cdot \partial f_{a} = \frac{\gamma_{b}}{2} \int \sum_{bcd} \prod_{i=b,c,d} \frac{d^{3}p_{i}}{2E_{i}(2\pi)^{3}} (f_{c}f_{d} - f_{a}f_{b}) |M_{ab \rightarrow cd}|^{2}$$

$$\times S(\hat{s}, \hat{t}, \hat{u})(2\pi)^{4} \delta^{4}(p_{a} + p_{b} - p_{c} - p_{d}) + inelastic$$
He, Luo, Wang and Zhu, Phys. Rev. C 91 (2015) 054908
$$\frac{dN_{g}^{a}}{dzdk_{\perp}^{2}dt} = \frac{6\alpha_{s}P_{a}(z)k_{\perp}^{4}}{\pi(k_{\perp}^{2} + z^{2}m^{2})^{4}} \frac{p \cdot u}{p_{0}} \hat{q}_{a}(x) \sin^{2}\frac{\tau - \tau_{i}}{2\tau_{f}}$$
Zhang, Wang, Wang, PRL 93 (2014) 072301
LBT model has been used successfully to describe light-favor, heavy-flavor hadron and jet suppression, Z/W/\gamma+jet correlations in heavy-ion collisions.
Luo, Cao, He and Wang, Phys. Lett. B 782 (2018), 707-716

Zhang, Luo, Wang and Zhang, Nucl. Phys. A 982 (2019),

599-602

Medium Excitation

large-radius jets

p_T spectra and the nuclear modification factor

- An obvious suppression of the inclusive jets as well as the reclustered LR jets in Pb+Pb collisions relative to pp collisions can be seen.
- R_{AA} goes up slowly with increasing p_T^{jet} .
- R_{AA} of LR jets with R=1.0 is a bit smaller than that of inclusive jets with R=0.4.

LR jets will lose more energy than both R=0.2 and R=0.4 inclusive jets.

400 450 500

400 450 500

The splitting scale $(\sqrt{d_{12}})$

S. L. Zhang, M. Q. Yang and B. W. Zhang, Eur. Phys. J. C 82, no.5, 414 (2022).

- R_{AA} for LR jets with SSJ is significantly different compared to those with MSJ.
- R_{AA} sharply decreases with increasing $\sqrt{d_{12}}$ for smalle values of the splitting scale followed by flattening for larger $\sqrt{d_{12}}$.

LR jets with a SSJ

- Jets with SSJ are less suppressed than jets with MSJ.
- The change of jet substructure due to jet medium interactions may play an indispensable role.

LR jets with MSJ

$$\sqrt{d_{12}} = \sqrt{\min(p_{T,1}^2, p_{T,2}^2) * \Delta R_{12}^2}$$

$$z = p_T^{min} / p_T^{Jet}$$

S. L. Zhang, M. Q. Yang and B. W. Zhang, Eur. Phys. J. C 82, no.5, 414 (2022).

- At small ΔR_{12} , z region, enhancement, $R_{AA} > 1$.
- At large areas, suppression, $R_{AA} < 1$.

S. L. Zhang, M. Q. Yang and B. W. Zhang, Eur. Phys. J. C 82, no.5, 414 (2022).

- $\langle p_T^{subjet} \rangle$ and $\langle \Delta R_{12} \rangle$ are increasing with increasing $\sqrt{d_{12}}$.
- Almost no difference of $\langle p_T^{subjet} \rangle$ and $\langle \Delta R_{12} \rangle$ between p+p and Pb+Pb collisions with the same jet transverse momentum p_T^{Jet} .
- p_T^{Jet} is much larger for higher energy LR jets, while $\langle p_T^{subjet} \rangle$ is much smaller.

The splitting angle ΔR_{12}

Medium modifications on jet substructure alter $\sqrt{d_{12}}$ distribution pattern.

The splitting function $z = \frac{p_T^{min}}{p_T^{Jet}}$

- 2 → 2, enhanced in small region and suppressed in large region.
- The contributions from $1 \to 2$ is larger than that from $2 \to 1.$

$R_{AA}(\Delta R_{12})$ for different ΔR_{12}

 R_{AA} depends on ΔR_{12} , and jets having small ΔR_{12} values suppressed less than that with larger values.

$R_{AA}(p_T)$ for different p_T

 R_{AA} does not significantly depend on p_T^{jet} .

R-dependence

- R^R_{AA}/R^{0.2}_{AA} significantly increases for inclusive jets but slightly decreases for LR jets with increasing jet R.
- The medium response has strong effect on inclusive jets while no significant effect is found for LR jets.

- on Pythia8 and LBT model, we have carried out the first detailed theoretical investigation of the medium modification on LR jets production and its the hardest parton splitting.
- The medium modifications on jet ΔR₁₂ and z spectra are the combined result of both jet yields reduction and the changes of the jet substructures.
- The medium modification of ΔR_{12} and z lead to that of $\sqrt{d_{12}}$.
- jet suppression largely depends on θ_{SJ} and weakly depends on p_T .
- LR jets suppression indeed depends on its substructure.
- Inclusive jets with large R will lose less energy. Inclusive jets have obvious R-dependence and strong effect on medium response. however, LR jets with large R will lose more energy. no significant R-dependence and effect from medium response are found for LR jets.

Thank you

backup

First step

Definition of a new seed jet: $E_T^{max} > 3 GeV, \quad \frac{E_T^{max}}{\langle E_T \rangle} > 4$ Event plane angle: $\psi_2 = \frac{1}{2} \tan^{-1} \left(\sum_k \frac{w_k E_{Tk} \sin(2\phi_k)}{\sum_k w_k E_{Tk} \cos(2\phi_k)} \right)$ Elliptic flow: $v_{2i} = \frac{\sum_{j \in i} E_{Tj} \cos(2(\phi_j - \psi_2))}{\sum_{j \in i} E_{Tj}}$ Transverse energies: $E_T^{sub} = E_{Tj} - A_j \rho_i(\eta_j) (1 + 2v_2 \cos(2(\phi_j - \psi_2))))$

Second step

Definition of a new seed jet: $E_T > 25 GeV$, Update $\rho_i(\eta_j)$ and v_2

Algorithms

anti –
$$k_T$$
 algorithm $d_{ij} = min(p_{T_i}^{-2}, p_{T_j}^{-2})\Delta R_{ij}/R_2$
 k_T algorithm $d_{ij} = min(p_{T_i}^2, p_{T_j}^2)\Delta R_{ij}/R_2$

Meng-Quan Yang (CCNU)

The fractions of large-radius jets with different structures indeed depend on the threshold of p_T^{subjet} .